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To my parents,
who taught me how to be a thinking human, and so

much more



Prologue: Terrified

Computers seem to be getting smarter at an alarming rate, but
one thing they still can’t do is appreciate irony. That’s what was
on my mind a few years ago, when, on my way to a discussion
about artificial intelligence (AI), I got lost in the capital of
searching and finding—the Googleplex, Google’s world
headquarters in Mountain View, California. What’s more, I was
lost inside the Google Maps building. Irony squared.

The Maps building itself had been easy to find. A Google
Street View car was parked by the front door, a hulking
appendage crowned by a red-and-black soccer ball of a camera
sticking up from its roof. However, once inside, with my
prominent “Visitor” badge assigned by security, I wandered,
embarrassed, among warrens of cubicles occupied by packs of
Google workers, headphones over ears, intently typing on Apple
desktops. After some (map-less) random search, I finally found
the conference room assigned for the daylong meeting and
joined the group gathered there.

The meeting, in May 2014, had been organized by Blaise
Agüera y Arcas, a young computer scientist who had recently left
a top position at Microsoft to help lead Google’s machine
intelligence effort. Google started out in 1998 with one
“product”: a website that used a novel, extraordinarily successful
method for searching the web. Over the years, Google has
evolved into the world’s most important tech company and now
offers a vast array of products and services, including Gmail,
Google Docs, Google Translate, YouTube, Android, many more



that you might use every day, and some that you’ve likely never
heard of.

Google’s founders, Larry Page and Sergey Brin, have long
been motivated by the idea of creating artificial intelligence in
computers, and this quest has become a major focus at Google.
In the last decade, the company has hired a profusion of AI
experts, most notably Ray Kurzweil, a well-known inventor and a
controversial futurist who promotes the idea of an AI Singularity,
a time in the near future when computers will become smarter
than humans. Google hired Kurzweil to help realize this vision. In
2011, Google created an internal AI research group called
Google Brain; since then, the company has also acquired an
impressive array of AI start-up companies with equally optimistic
names: Applied Semantics, DeepMind, and Vision Factory,
among others.

In short, Google is no longer merely a web-search portal—
not by a long shot. It is rapidly becoming an applied AI company.
AI is the glue that unifies the diverse products, services, and
blue-sky research efforts offered by Google and its parent
company, Alphabet. The company’s ultimate aspiration is
reflected in the original mission statement of its DeepMind
group: “Solve intelligence and use it to solve everything else.”1

AI and GEB
I was pretty excited to attend an AI meeting at Google. I had
been working on various aspects of AI since graduate school in
the 1980s and had been tremendously impressed by what
Google had accomplished. I also thought I had some good ideas
to contribute. But I have to admit that I was there only as a
tagalong. The meeting was happening so that a group of select
Google AI researchers could hear from and converse with
Douglas Hofstadter, a legend in AI and the author of a famous



book cryptically titled Gödel, Escher, Bach: an Eternal Golden Braid,
or more succinctly, GEB (pronounced “gee-ee-bee”). If you’re a
computer scientist, or a computer enthusiast, it’s likely you’ve
heard of it, or read it, or tried to read it.

Written in the 1970s, GEB was an outpouring of Hofstadter’s
many intellectual passions—mathematics, art, music, language,
humor, and wordplay, all brought together to address the deep
questions of how intelligence, consciousness, and the sense of
self-awareness that each human experiences so fundamentally
can emerge from the non-intelligent, nonconscious substrate of
biological cells. It’s also about how intelligence and self-
awareness might eventually be attained by computers. It’s a
unique book; I don’t know of any other book remotely like it. It’s
not an easy read, and yet it became a bestseller and won both
the Pulitzer Prize and the National Book Award. Without a doubt,
GEB inspired more young people to pursue AI than any other
book. I was one of those young people.

In the early 1980s, after graduating from college with a math
degree, I was living in New York City, teaching math in a prep
school, unhappy, and casting about for what I really wanted to
do in life. I discovered GEB after reading a rave review in Scientific
American. I went out and bought the book immediately. Over the
next several weeks, I devoured it, becoming increasingly
convinced that not only did I want to become an AI researcher
but I specifically wanted to work with Douglas Hofstadter. I had
never before felt so strongly about a book, or a career choice.

At the time, Hofstadter was a professor in computer science
at Indiana University, and my quixotic plan was to apply to the
computer science PhD program there, arrive, and then persuade
Hofstadter to accept me as a student. One minor problem was
that I had never taken even one computer science course. I had
grown up with computers; my father was a hardware engineer at
a 1960s tech start-up company, and as a hobby he built a
mainframe computer in our family’s den. The refrigerator-sized



Sigma 2 machine wore a magnetic button proclaiming “I pray in
FORTRAN,” and as a child I was half-convinced it did, quietly at
night, while the rest of the family was asleep. Growing up in the
1960s and ’70s, I learned a bit of each of the popular languages
of the day: FORTRAN, then BASIC, then Pascal, but I knew next to
nothing about proper programming techniques, not to mention
anything else an incoming computer science graduate student
needs to know.

To speed along my plan, I quit my teaching job at the end of
the school year, moved to Boston, and started taking
introductory computer science courses to prepare for my new
career. A few months into my new life, I was on the campus of
the Massachusetts Institute of Technology, waiting for a class to
begin, and I caught sight of a poster advertising a lecture by
Douglas Hofstadter, to take place in two days on that very
campus. I did a double take; I couldn’t believe my good fortune. I
went to the lecture, and after a long wait for my turn in a crowd
of admirers I managed to speak to Hofstadter. It turned out he
was in the middle of a yearlong sabbatical at MIT, after which he
was moving from Indiana to the University of Michigan in Ann
Arbor.

To make a long story short, after some persistent pursuit on
my part, I persuaded Hofstadter to take me on as a research
assistant, first for a summer, and then for the next six years as a
graduate student, after which I graduated with a doctorate in
computer science from Michigan. Hofstadter and I have kept in
close touch over the years and have had many discussions about
AI. He knew of my interest in Google’s AI research and was nice
enough to invite me to accompany him to the Google meeting.

Chess and the First Seed of Doubt



The group in the hard-to-locate conference room consisted of
about twenty Google engineers (plus Douglas Hofstadter and
myself), all of whom were members of various Google AI teams.
The meeting started with the usual going around the room and
having people introduce themselves. Several noted that their
own careers in AI had been spurred by reading GEB at a young
age. They were all excited and curious to hear what the
legendary Hofstadter would say about AI. Then Hofstadter got
up to speak. “I have some remarks about AI research in general,
and here at Google in particular.” His voice became passionate. “I
am terrified. Terrified.”

Hofstadter went on.2 He described how, when he first started
working on AI in the 1970s, it was an exciting prospect but
seemed so far from being realized that there was no “danger on
the horizon, no sense of it actually happening.” Creating
machines with humanlike intelligence was a profound
intellectual adventure, a long-term research project whose
fruition, it had been said, lay at least “one hundred Nobel prizes
away.”3 Hofstadter believed AI was possible in principle: “The
‘enemy’ were people like John Searle, Hubert Dreyfus, and other
skeptics, who were saying it was impossible. They did not
understand that a brain is a hunk of matter that obeys physical
law and the computer can simulate anything  … the level of
neurons, neurotransmitters, et cetera. In theory, it can be done.”
Indeed, Hofstadter’s ideas about simulating intelligence at
various levels—from neurons to consciousness—were discussed
at length in GEB and had been the focus of his own research for
decades. But in practice, until recently, it seemed to Hofstadter
that general “human-level” AI had no chance of occurring in his
(or even his children’s) lifetime, so he didn’t worry much about it.

Near the end of GEB, Hofstadter had listed “Ten Questions
and Speculations” about artificial intelligence. Here’s one of
them: “Will there be chess programs that can beat anyone?”
Hofstadter’s speculation was “no.” “There may be programs



which can beat anyone at chess, but they will not be exclusively
chess players. They will be programs of general intelligence.”4

At the Google meeting in 2014, Hofstadter admitted that he
had been “dead wrong.” The rapid improvement in chess
programs in the 1980s and ’90s had sown the first seed of doubt
in his appraisal of AI’s short-term prospects. Although the AI
pioneer Herbert Simon had predicted in 1957 that a chess
program would be world champion “within 10 years,” by the mid-
1970s, when Hofstadter was writing GEB, the best computer
chess programs played only at the level of a good (but not great)
amateur. Hofstadter had befriended Eliot Hearst, a chess
champion and psychology professor who had written extensively
on how human chess experts differ from computer chess
programs. Experiments showed that expert human players rely
on quick recognition of patterns on the chessboard to decide on
a move rather than the extensive brute-force look-ahead search
that all chess programs use. During a game, the best human
players can perceive a configuration of pieces as a particular
“kind of position” that requires a certain “kind of strategy.” That
is, these players can quickly recognize particular configurations
and strategies as instances of higher-level concepts. Hearst
argued that without such a general ability to perceive patterns
and recognize abstract concepts, chess programs would never
reach the level of the best humans. Hofstadter was persuaded by
Hearst’s arguments.

However, in the 1980s and ’90s, computer chess saw a big
jump in improvement, mostly due to the steep increase in
computer speed. The best programs still played in a very
unhuman way: performing extensive look-ahead to decide on
the next move. By the mid-1990s, IBM’s Deep Blue machine, with
specialized hardware for playing chess, had reached the
Grandmaster level, and in 1997 the program defeated the
reigning world chess champion, Garry Kasparov, in a six-game



match. Chess mastery, once seen as a pinnacle of human
intelligence, had succumbed to a brute-force approach.

Music: The Bastion of Humanity
Although Deep Blue’s win generated a lot of hand-wringing in
the press about the rise of intelligent machines, “true” AI still
seemed quite distant. Deep Blue could play chess, but it couldn’t
do anything else. Hofstadter had been wrong about chess, but
he still stood by the other speculations in GEB, especially the one
he had listed first:

QUESTION: Will a computer ever write beautiful music?
SPECULATION: Yes but not soon.

Hofstadter continued,

Music is a language of emotions, and until programs have emotions
as complex as ours, there is no way a program will write anything
beautiful. There can be “forgeries”—shallow imitations of the syntax of
earlier music—but despite what one might think at first, there is much
more to musical expression than can be captured in syntactic rules.…
To think … that we might soon be able to command a preprogrammed
mass-produced mail-order twenty-dollar desk-model “music box” to
bring forth from its sterile circuitry pieces which Chopin or Bach might
have written had they lived longer is a grotesque and shameful
misestimation of the depth of the human spirit.5

Hofstadter described this speculation as “one of the most
important parts of GEB—I would have staked my life on it.”

In the mid-1990s, Hofstadter’s confidence in his assessment
of AI was again shaken, this time quite profoundly, when he
encountered a program written by a musician, David Cope. The
program was called Experiments in Musical Intelligence, or EMI
(pronounced “Emmy”). Cope, a composer and music professor,
had originally developed EMI to aid him in his own composing



process by automatically creating pieces in Cope’s specific style.
However, EMI became famous for creating pieces in the style of
classical composers such as Bach and Chopin. EMI composes by
following a large set of rules, developed by Cope, that are meant
to capture a general syntax of composition. These rules are
applied to copious examples from a particular composer’s opus
in order to produce a new piece “in the style” of that composer.

Back at our Google meeting, Hofstadter spoke with
extraordinary emotion about his encounters with EMI:

I sat down at my piano and I played one of EMI’s mazurkas “in the
style of Chopin.” It didn’t sound exactly like Chopin, but it sounded
enough like Chopin, and like coherent music, that I just felt deeply
troubled.

Ever since I was a child, music has thrilled me and moved me to the
very core. And every piece that I love feels like it’s a direct message
from the emotional heart of the human being who composed it. It
feels like it is giving me access to their innermost soul. And it feels like
there is nothing more human in the world than that expression of
music. Nothing. The idea that pattern manipulation of the most
superficial sort can yield things that sound as if they are coming from
a human being’s heart is very, very troubling. I was just completely
thrown by this.

Hofstadter then recounted a lecture he gave at the
prestigious Eastman School of Music, in Rochester, New York.
After describing EMI, Hofstadter had asked the Eastman
audience—including several music theory and composition
faculty—to guess which of two pieces a pianist played for them
was a (little-known) mazurka by Chopin and which had been
composed by EMI. As one audience member described later,
“The first mazurka had grace and charm, but not ‘true-Chopin’
degrees of invention and large-scale fluidity  … The second was
clearly the genuine Chopin, with a lyrical melody; large-scale,
graceful chromatic modulations; and a natural, balanced form.”6

Many of the faculty agreed and, to Hofstadter’s shock, voted EMI



for the first piece and “real-Chopin” for the second piece. The
correct answers were the reverse.

In the Google conference room, Hofstadter paused, peering
into our faces. No one said a word. At last he went on. “I was
terrified by EMI. Terrified. I hated it, and was extremely
threatened by it. It was threatening to destroy what I most
cherished about humanity. I think EMI was the most
quintessential example of the fears that I have about artificial
intelligence.”

Google and the Singularity
Hofstadter then spoke of his deep ambivalence about what
Google itself was trying to accomplish in AI—self-driving cars,
speech recognition, natural-language understanding, translation
between languages, computer-generated art, music
composition, and more. Hofstadter’s worries were underlined by
Google’s embrace of Ray Kurzweil and his vision of the
Singularity, in which AI, empowered by its ability to improve itself
and learn on its own, will quickly reach, and then exceed, human-
level intelligence. Google, it seemed, was doing everything it
could to accelerate that vision. While Hofstadter strongly
doubted the premise of the Singularity, he admitted that
Kurzweil’s predictions still disturbed him. “I was terrified by the
scenarios. Very skeptical, but at the same time, I thought, maybe
their timescale is off, but maybe they’re right. We’ll be completely
caught off guard. We’ll think nothing is happening and all of a
sudden, before we know it, computers will be smarter than us.”

If this actually happens, “we will be superseded. We will be
relics. We will be left in the dust.

“Maybe this is going to happen, but I don’t want it to happen
soon. I don’t want my children to be left in the dust.”



Hofstadter ended his talk with a direct reference to the very
Google engineers in that room, all listening intently: “I find it
very scary, very troubling, very sad, and I find it terrible,
horrifying, bizarre, baffling, bewildering, that people are rushing
ahead blindly and deliriously in creating these things.”

Why Is Hofstadter Terrified?
I looked around the room. The audience appeared mystified,
embarrassed even. To these Google AI researchers, none of this
was the least bit terrifying. In fact, it was old news. When Deep
Blue beat Kasparov, when EMI started composing Chopin-like
mazurkas, and when Kurzweil wrote his first book on the
Singularity, many of these engineers had been in high school,
probably reading GEB and loving it, even though its AI
prognostications were a bit out of date. The reason they were
working at Google was precisely to make AI happen—not in a
hundred years, but now, as soon as possible. They didn’t
understand what Hofstadter was so stressed out about.

People who work in AI are used to encountering the fears of
people outside the field, who have presumably been influenced
by the many science fiction movies depicting superintelligent
machines that turn evil. AI researchers are also familiar with the
worries that increasingly sophisticated AI will replace humans in
some jobs, that AI applied to big data sets could subvert privacy
and enable subtle discrimination, and that ill-understood AI
systems allowed to make autonomous decisions have the
potential to cause havoc.

Hofstadter’s terror was in response to something entirely
different. It was not about AI becoming too smart, too invasive,
too malicious, or even too useful. Instead, he was terrified that
intelligence, creativity, emotions, and maybe even consciousness
itself would be too easy to produce—that what he valued most in



humanity would end up being nothing more than a “bag of
tricks,” that a superficial set of brute-force algorithms could
explain the human spirit.

As GEB made abundantly clear, Hofstadter firmly believes
that the mind and all its characteristics emerge wholly from the
physical substrate of the brain and the rest of the body, along
with the body’s interaction with the physical world. There is
nothing immaterial or incorporeal lurking there. The issue that
worries him is really one of complexity. He fears that AI might
show us that the human qualities we most value are
disappointingly simple to mechanize. As Hofstadter explained to
me after the meeting, here referring to Chopin, Bach, and other
paragons of humanity, “If such minds of infinite subtlety and
complexity and emotional depth could be trivialized by a small
chip, it would destroy my sense of what humanity is about.”

I Am Confused
Following Hofstadter’s remarks, there was a short discussion, in
which the nonplussed audience prodded Hofstadter to further
explain his fears about AI and about Google in particular. But a
communication barrier remained. The meeting continued, with
project presentations, group discussion, coffee breaks, the usual
—none of it really touching on Hofstadter’s comments. Close to
the end of the meeting, Hofstadter asked the participants for
their thoughts about the near-term future of AI. Several of the
Google researchers predicted that general human-level AI would
likely emerge within the next thirty years, in large part due to
Google’s own advances on the brain-inspired method of “deep
learning.”

I left the meeting scratching my head in confusion. I knew
that Hofstadter had been troubled by some of Kurzweil’s
Singularity writings, but I had never before appreciated the



degree of his emotion and anxiety. I also had known that Google
was pushing hard on AI research, but I was startled by the
optimism several people there expressed about how soon AI
would reach a general “human” level. My own view had been that
AI had progressed a lot in some narrow areas but was still
nowhere close to having the broad, general intelligence of
humans, and it would not get there in a century, let alone thirty
years. And I had thought that people who believed otherwise
were vastly underestimating the complexity of human
intelligence. I had read Kurzweil’s books and had found them
largely ridiculous. However, listening to all the comments at the
meeting, from people I respected and admired, forced me to
critically examine my own views. While assuming that these AI
researchers underestimated humans, had I in turn
underestimated the power and promise of current-day AI?

Over the months that followed, I started paying more
attention to the discussion surrounding these questions. I
started to notice the slew of articles, blog posts, and entire
books by prominent people suddenly telling us we should start
worrying, right now, about the perils of “superhuman” AI. In
2014, the physicist Stephen Hawking proclaimed, “The
development of full artificial intelligence could spell the end of
the human race.”7 In the same year, the entrepreneur Elon Musk,
founder of the Tesla and SpaceX companies, said that artificial
intelligence is probably “our biggest existential threat” and that
“with artificial intelligence we are summoning the demon.”8

Microsoft’s cofounder Bill Gates concurred: “I agree with Elon
Musk and some others on this and don’t understand why some
people are not concerned.”9 The philosopher Nick Bostrom’s
book Superintelligence, on the potential dangers of machines
becoming smarter than humans, became a surprise bestseller,
despite its dry and ponderous style.

Other prominent thinkers were pushing back. Yes, they said,
we should make sure that AI programs are safe and don’t risk



harming humans, but any reports of near-term superhuman AI
are greatly exaggerated. The entrepreneur and activist Mitchell
Kapor advised, “Human intelligence is a marvelous, subtle, and
poorly understood phenomenon. There is no danger of
duplicating it anytime soon.”10 The roboticist (and former
director of MIT’s AI Lab) Rodney Brooks agreed, stating that we
“grossly overestimate the capabilities of machines—those of
today and of the next few decades.”11 The psychologist and AI
researcher Gary Marcus went so far as to assert that in the quest
to create “strong AI”—that is, general human-level AI—“there has
been almost no progress.”12

I could go on and on with dueling quotations. In short, what
I found is that the field of AI is in turmoil. Either a huge amount
of progress has been made, or almost none at all. Either we are
within spitting distance of “true” AI, or it is centuries away. AI will
solve all our problems, put us all out of a job, destroy the human
race, or cheapen our humanity. It’s either a noble quest or
“summoning the demon.”



What This Book Is About
This book arose from my attempt to understand the true state of
affairs in artificial intelligence—what computers can do now, and
what we can expect from them over the next decades.
Hofstadter’s provocative comments at the Google meeting were
something of a wake-up call for me, as were the Google
researchers’ confident responses about AI’s near-term future. In
the chapters that follow, I try to sort out how far artificial
intelligence has come, as well as elucidate its disparate—and
sometimes conflicting—goals. In doing so, I consider how some
of the most prominent AI systems actually work, and investigate
how successful they are and where their limitations lie. I look at
the extent to which computers can now do things that we
believe to require high levels of intelligence—beating humans at
the most intellectually demanding games, translating between
languages, answering complex questions, navigating vehicles in
challenging terrain. And I examine how they fare at the things
we take for granted, the everyday tasks we humans perform
without conscious thought: recognizing faces and objects in
images, understanding spoken language and written text, and
using the most basic common sense.

I also try to make sense of the broader questions that have
fueled debates about AI since its inception: What do we actually
mean by “general human” or even “superhuman” intelligence? Is
current AI close to this level, or even on a trajectory to get there?
What are the dangers? What aspects of our intelligence do we
most cherish, and to what extent would human-level AI
challenge how we think about our own humanness? To use
Hofstadter’s terms, how terrified should we be?

This book is not a general survey or history of artificial
intelligence. Rather, it is an in-depth exploration of some of the
AI methods that probably affect your life, or will soon, as well as
the AI efforts that perhaps go furthest in challenging our sense



of human uniqueness. My aim is for you to share in my own
exploration and, like me, to come away with a clearer sense of
what the field has accomplished and how much further there is
to go before our machines can argue for their own humanity.



Part I

Background



1

The Roots of Artificial
Intelligence

Two Months and Ten Men at Dartmouth

The dream of creating an intelligent machine—one that is as
smart as or smarter than humans—is centuries old but became
part of modern science with the rise of digital computers. In fact,
the ideas that led to the first programmable computers came
out of mathematicians’ attempts to understand human thought
—particularly logic—as a mechanical process of “symbol
manipulation.” Digital computers are essentially symbol
manipulators, pushing around combinations of the symbols 0
and 1. To pioneers of computing like Alan Turing and John von
Neumann, there were strong analogies between computers and
the human brain, and it seemed obvious to them that human
intelligence could be replicated in computer programs.

Most people in artificial intelligence trace the field’s official
founding to a small workshop in 1956 at Dartmouth College
organized by a young mathematician named John McCarthy.

In 1955, McCarthy, aged twenty-eight, joined the
mathematics faculty at Dartmouth. As an undergraduate, he had
learned a bit about both psychology and the nascent field of
“automata theory” (later to become computer science) and had
become intrigued with the idea of creating a thinking machine.



In graduate school in the mathematics department at Princeton,
McCarthy had met a fellow student, Marvin Minsky, who shared
his fascination with the potential of intelligent computers. After
graduating, McCarthy had short-lived stints at Bell Labs and IBM,
where he collaborated, respectively, with Claude Shannon, the
inventor of information theory, and Nathaniel Rochester, a
pioneering electrical engineer. Once at Dartmouth, McCarthy
persuaded Minsky, Shannon, and Rochester to help him
organize “a 2 month, 10 man study of artificial intelligence to be
carried out during the summer of 1956.”1 The term artificial
intelligence was McCarthy’s invention; he wanted to distinguish
this field from a related effort called cybernetics.2 McCarthy later
admitted that no one really liked the name—after all, the goal
was genuine, not “artificial,” intelligence—but “I had to call it
something, so I called it ‘Artificial Intelligence.’”3

The four organizers submitted a proposal to the Rockefeller
Foundation asking for funding for the summer workshop. The
proposed study was, they wrote, based on “the conjecture that
every aspect of learning or any other feature of intelligence can
be in principle so precisely described that a machine can be
made to simulate it.”4 The proposal listed a set of topics to be
discussed—natural-language processing, neural networks,
machine learning, abstract concepts and reasoning, creativity—
that have continued to define the field to the present day.

Even though the most advanced computers in 1956 were
about a million times slower than today’s smartphones,
McCarthy and colleagues were optimistic that AI was in close
reach: “We think that a significant advance can be made in one
or more of these problems if a carefully selected group of
scientists work on it together for a summer.”5

Obstacles soon arose that would be familiar to anyone
organizing a scientific workshop today. The Rockefeller
Foundation came through with only half the requested amount
of funding. And it turned out to be harder than McCarthy had



thought to persuade the participants to actually come and then
stay, not to mention agree on anything. There were lots of
interesting discussions but not a lot of coherence. As usual in
such meetings, “Everyone had a different idea, a hearty ego, and
much enthusiasm for their own plan.”6 However, the Dartmouth
summer of AI did produce a few very important outcomes. The
field itself was named, and its general goals were outlined. The
soon-to-be “big four” pioneers of the field—McCarthy, Minsky,
Allen Newell, and Herbert Simon—met and did some planning
for the future. And for whatever reason, these four came out of
the meeting with tremendous optimism for the field. In the early
1960s, McCarthy founded the Stanford Artificial Intelligence
Project, with the “goal of building a fully intelligent machine in a
decade.”7 Around the same time, the future Nobel laureate
Herbert Simon predicted, “Machines will be capable, within
twenty years, of doing any work that a man can do.”8 Soon after,
Marvin Minsky, founder of the MIT AI Lab, forecasted that
“within a generation  … the problems of creating ‘artificial
intelligence’ will be substantially solved.”9

Definitions, and Getting On with It
None of these predicted events have yet come to pass. So how
far do we remain from the goal of building a “fully intelligent
machine”? Would such a machine require us to reverse engineer
the human brain in all its complexity, or is there a shortcut, a
clever set of yet-unknown algorithms, that can produce what we
recognize as full intelligence? What does “full intelligence” even
mean?

“Define your terms  … or we shall never understand one
another.”10 This admonition from the eighteenth-century
philosopher Voltaire is a challenge for anyone talking about
artificial intelligence, because its central notion—intelligence—



remains so ill-defined. Marvin Minsky himself coined the phrase
“suitcase word”11 for terms like intelligence and its many cousins,
such as thinking, cognition, consciousness, and emotion. Each is
packed like a suitcase with a jumble of different meanings.
Artificial intelligence inherits this packing problem, sporting
different meanings in different contexts.

Most people would agree that humans are intelligent and
specks of dust are not. Likewise, we generally believe that
humans are more intelligent than worms. As for human
intelligence, IQ is measured on a single scale, but we also talk
about the different dimensions of intelligence: emotional, verbal,
spatial, logical, artistic, social, and so forth. Thus, intelligence can
be binary (something is or is not intelligent), on a continuum
(one thing is more intelligent than another thing), or
multidimensional (someone can have high verbal intelligence
but low emotional intelligence). Indeed, the word intelligence is
an over-packed suitcase, zipper on the verge of breaking.

For better or worse, the field of AI has largely ignored these
various distinctions. Instead, it has focused on two efforts: one
scientific and one practical. On the scientific side, AI researchers
are investigating the mechanisms of “natural” (that is, biological)
intelligence by trying to embed it in computers. On the practical
side, AI proponents simply want to create computer programs
that perform tasks as well as or better than humans, without
worrying about whether these programs are actually thinking in
the way humans think. When asked if their motivations are
practical or scientific, many AI people joke that it depends on
where their funding currently comes from.

In a recent report on the current state of AI, a committee of
prominent researchers defined the field as “a branch of
computer science that studies the properties of intelligence by
synthesizing intelligence.”12 A bit circular, yes. But the same
committee also admitted that it’s hard to define the field, and
that may be a good thing: “The lack of a precise, universally



accepted definition of AI probably has helped the field to grow,
blossom, and advance at an ever-accelerating pace.”13

Furthermore, the committee notes, “Practitioners, researchers,
and developers of AI are instead guided by a rough sense of
direction and an imperative to ‘get on with it.’”

An Anarchy of Methods
At the 1956 Dartmouth workshop, different participants
espoused divergent opinions about the correct approach to take
to develop AI. Some people—generally mathematicians—
promoted mathematical logic and deductive reasoning as the
language of rational thought. Others championed inductive
methods in which programs extract statistics from data and use
probabilities to deal with uncertainty. Still others believed firmly
in taking inspiration from biology and psychology to create
brain-like programs. What you may find surprising is that the
arguments among proponents of these various approaches
persist to this day. And each approach has generated its own
panoply of principles and techniques, fortified by specialty
conferences and journals, with little communication among the
subspecialties. A recent AI survey paper summed it up: “Because
we don’t deeply understand intelligence or know how to produce
general AI, rather than cutting off any avenues of exploration, to
truly make progress we should embrace AI’s ‘anarchy of
methods.’”14

But since the 2010s, one family of AI methods—collectively
called deep learning (or deep neural networks)—has risen above
the anarchy to become the dominant AI paradigm. In fact, in
much of the popular media, the term artificial intelligence itself
has come to mean “deep learning.” This is an unfortunate
inaccuracy, and I need to clarify the distinction. AI is a field that
includes a broad set of approaches, with the goal of creating



machines with intelligence. Deep learning is only one such
approach. Deep learning is itself one method among many in
the field of machine learning, a subfield of AI in which machines
“learn” from data or from their own “experiences.” To better
understand these various distinctions, it’s important to
understand a philosophical split that occurred early in the AI
research community: the split between so-called symbolic and
subsymbolic AI.

Symbolic AI
First let’s look at symbolic AI. A symbolic AI program’s knowledge
consists of words or phrases (the “symbols”), typically
understandable to a human, along with rules by which the
program can combine and process these symbols in order to
perform its assigned task.

I’ll give you an example. One early AI program was
confidently called the General Problem Solver,15 or GPS for short.
(Sorry about the confusing acronym; the General Problem Solver
predated the Global Positioning System.) GPS could solve
problems such as the “Missionaries and Cannibals” puzzle, which
you might have tackled yourself as a child. In this well-known
conundrum, three missionaries and three cannibals all need to
cross a river, but their boat holds only two people. If at any time
the (hungry) cannibals outnumber the (tasty-looking)
missionaries on one side of the river … well, you probably know
what happens. How do all six get across the river intact?

The creators of the General Problem Solver, the cognitive
scientists Herbert Simon and Allen Newell, had recorded several
students “thinking out loud” while solving this and other logic
puzzles. Simon and Newell then designed their program to
mimic what they believed were the students’ thought processes.



I won’t go into the details of how GPS worked, but its
symbolic nature can be seen by the way the program’s
instructions were encoded. To set up the problem, a human
would write code for GPS that looked something like this:

CURRENT STATE:
LEFT-BANK = [3 MISSIONARIES, 3 CANNIBALS, 1 BOAT]
RIGHT-BANK = [EMPTY]

 

DESIRED STATE:
LEFT-BANK = [EMPTY]
RIGHT-BANK = [3 MISSIONARIES, 3 CANNIBALS, 1 BOAT]

In English, these lines represent the fact that initially the left
bank of the river “contains” three missionaries, three cannibals,
and one boat, whereas the right bank doesn’t contain any of
these. The desired state represents the goal of the program—get
everyone to the right bank of the river.

At each step in its procedure, GPS attempts to change its
current state to make it more similar to the desired state. In its
code, the program has “operators” (in the form of subprograms)
that can transform the current state into a new state and “rules”
that encode the constraints of the task. For example, there is an
operator that moves some number of missionaries and
cannibals from one side of the river to the other:

MOVE (#MISSIONARIES, #CANNIBALS, FROM-SIDE, TO-SIDE)

The words inside the parentheses are called arguments, and
when the program runs, it replaces these words with numbers or
other words. That is, #MISSIONARIES is replaced with the
number of missionaries to move, #CANNIBALS with the number
of cannibals to move, and FROM-SIDE and TO-SIDE are replaced
with “LEFT-BANK” or “RIGHT-BANK,” depending on which
riverbank the missionaries and cannibals are to be moved from.



Encoded into the program is the knowledge that the boat is
moved along with the missionaries and cannibals.

Before being able to apply this operator with specific values
replacing the arguments, the program must check its encoded
rules; for example, the maximum number of people that can
move at a time is two, and the operator cannot be used if it will
result in cannibals outnumbering missionaries on a riverbank.

While these symbols represent human-interpretable
concepts such as missionaries, cannibals, boat, and left bank, the
computer running this program of course has no knowledge of
the meaning of these symbols. You could replace all occurrences
of “MISSIONARIES” with “Z372B” or any other nonsense string,
and the program would work in exactly the same way. This is
part of what the term General refers to in General Problem
Solver. To the computer, the “meaning” of the symbols derives
from the ways in which they can be combined, related to one
another, and operated on.

Advocates of the symbolic approach to AI argued that to
attain intelligence in computers, it would not be necessary to
build programs that mimic the brain. Instead, the argument
goes, general intelligence can be captured entirely by the right
kind of symbol-processing program. Agreed, the workings of
such a program would be vastly more complex than the
Missionaries and Cannibals example, but it would still consist of
symbols, combinations of symbols, and rules and operations on
symbols. Symbolic AI of the kind illustrated by GPS ended up
dominating the field for its first three decades, most notably in
the form of expert systems, in which human experts devised rules
for computer programs to use in tasks such as medical diagnosis
and legal decision-making. There are several active branches of
AI that still employ symbolic AI; I’ll describe examples of it later,
particularly in discussions of AI approaches to reasoning and
common sense.



Subsymbolic AI: Perceptrons
Symbolic AI was originally inspired by mathematical logic as well
as by the way people described their conscious thought
processes. In contrast, subsymbolic approaches to AI took
inspiration from neuroscience and sought to capture the
sometimes-unconscious thought processes underlying what
some have called fast perception, such as recognizing faces or
identifying spoken words. Subsymbolic AI programs do not
contain the kind of human-understandable language we saw in
the Missionaries and Cannibals example above. Instead, a
subsymbolic program is essentially a stack of equations—a
thicket of often hard-to-interpret operations on numbers. As I’ll
explain shortly, such systems are designed to learn from data
how to perform a task.

An early example of a subsymbolic, brain-inspired AI
program was the perceptron, invented in the late 1950s by the
psychologist Frank Rosenblatt.16 The term perceptron may sound
a bit 1950s science-fiction-y to our modern ears (as we’ll see, it
was soon followed by the “cognitron” and the “neocognitron”),
but the perceptron was an important milestone in AI and was
the influential great-grandparent of modern AI’s most successful
tool, deep neural networks.

Rosenblatt’s invention of perceptrons was inspired by the
way in which neurons process information. A neuron is a cell in
the brain that receives electrical or chemical input from other
neurons that connect to it. Roughly speaking, a neuron sums up
all the inputs it receives from other neurons, and if the total sum
reaches a certain threshold level, the neuron fires. Importantly,
different connections (synapses) from other neurons to a given
neuron have different strengths; in calculating the sum of its
inputs, the given neuron gives more weight to inputs from
stronger connections than inputs from weaker connections.
Neuroscientists believe that adjustments to the strength of



connections between neurons is a key part of how learning takes
place in the brain.

FIGURE 1: A, a neuron in the brain; B, a simple perceptron

To a computer scientist (or, in Rosenblatt’s case, a
psychologist), information processing in neurons can be
simulated by a computer program—a perceptron—that has
multiple numerical inputs and one output. The analogy between
a neuron and a perceptron is illustrated in figure 1. Figure 1A
shows a neuron, with its branching dendrites (fibers that carry
inputs to the cell), cell body, and axon (that is, output channel)
labeled. Figure 1B shows a simple perceptron. Analogous to the
neuron, the perceptron adds up its inputs, and if the resulting
sum is equal to or greater than the perceptron’s threshold, the
perceptron outputs the value 1 (it “fires”); otherwise it outputs
the value 0 (it “does not fire”). To simulate the different strengths
of connections to a neuron, Rosenblatt proposed that a
numerical weight be assigned to each of a perceptron’s inputs;
each input is multiplied by its weight before being added to the
sum. A perceptron’s threshold is simply a number set by the
programmer (or, as we’ll see, learned by the perceptron itself).

In short, a perceptron is a simple program that makes a yes-
or-no (1 or 0) decision based on whether the sum of its weighted
inputs meets a threshold value. You probably make some
decisions like this in your life. For example, you might get input



from several friends on how much they liked a particular movie,
but you trust some of those friends’ taste in movies more than
others. If the total amount of “friend enthusiasm”—giving more
weight to your more trusted friends—is high enough (that is,
greater than some unconscious threshold), you decide to go to
the movie. This is how a perceptron would decide about movies,
if only it had friends.

FIGURE 2: Examples of handwritten digits

Inspired by networks of neurons in the brain, Rosenblatt
proposed that networks of perceptrons could perform visual
tasks such as recognizing faces and objects. To get a flavor of
how that might work, let’s explore how a perceptron might be
used for a particular visual task: recognizing handwritten digits
like those in figure 2.

In particular, let’s design a perceptron to be an 8 detector—
that is, to output a 1 if its inputs are from an image depicting an
8, and to output a 0 if the image depicts some other digit.
Designing such a detector requires us to (1) figure out how to
turn an image into a set of numerical inputs, and (2) determine



numbers to use for the perceptron’s weights and threshold, so
that it will give the correct output (1 for 8s, 0 for other digits). I’ll
go into some detail here because many of the same ideas will
arise later in my discussions of neural networks and their
applications in computer vision.

Our Perceptron’s Inputs
Figure 3A shows an enlarged handwritten 8. Each grid square is
a pixel with a numerical “intensity” value: white squares have an
intensity of 0, black squares have an intensity of 1, and gray
squares are in between. Let’s assume that the images we give to
our perceptron have been adjusted to be the same size as this
one: 18 × 18 pixels. Figure 3B illustrates a perceptron for
recognizing 8s. This perceptron has 324 (that is, 18 × 18) inputs,
each of which corresponds to one of the pixels in the 18 × 18
grid. Given an image like the one in figure 3A, each of the
perceptron’s inputs is set to the corresponding pixel’s intensity.
Each of the inputs would have its own weight value (not shown
in the figure).

FIGURE 3: An illustration of a perceptron that recognizes handwritten 8s. Each
pixel in the 18 × 18–pixel image corresponds to an input for the perceptron,

yielding 324 (= 18 × 18) inputs.



Learning the Perceptron’s Weights and
Threshold

Unlike the symbolic General Problem Solver system that I
described earlier, a perceptron doesn’t have any explicit rules for
performing its task; all of its “knowledge” is encoded in the
numbers making up its weights and threshold. In his various
papers, Rosenblatt showed that given the correct weight and
threshold values, a perceptron like the one in figure 3B can
perform fairly well on perceptual tasks such as recognizing
simple handwritten digits. But how, exactly, can we determine
the correct weights and threshold for a given task? Again,
Rosenblatt proposed a brain-inspired answer: the perceptron
should learn these values on its own. And how is it supposed to
learn the correct values? Like the behavioral psychology theories
popular at the time, Rosenblatt’s idea was that perceptrons
should learn via conditioning. Inspired in part by the behaviorist
psychologist B. F. Skinner, who trained rats and pigeons to
perform tasks by giving them positive and negative
reinforcement, Rosenblatt’s idea was that the perceptron should
similarly be trained on examples: it should be rewarded when it
fires correctly and punished when it errs. This form of
conditioning is now known in AI as supervised learning. During
training, the learning system is given an example, it produces an
output, and it is then given a “supervision signal,” which tells
how much the system’s output differs from the correct output.
The system then uses this signal to adjust its weights and
threshold.

The concept of supervised learning is a key part of modern
AI, so it’s worth discussing in more detail. Supervised learning
typically requires a large set of positive examples (for instance, a
collection of 8s written by different people) and negative
examples (for instance, a collection of other handwritten digits,
not including 8s). Each example is labeled by a human with its



category—here, 8 or not-8. This label will be used as the
supervision signal. Some of the positive and negative examples
are used to train the system; these are called the training set. The
remainder—the test set—is used to evaluate the system’s
performance after it has been trained, to see how well it has
learned to answer correctly in general, not just on the training
examples.

Perhaps the most important term in computer science is
algorithm, which refers to a “recipe” of steps a computer can take
in order to solve a particular problem. Frank Rosenblatt’s
primary contribution to AI was his design of a specific algorithm,
called the perceptron-learning algorithm, by which a perceptron
could be trained from examples to determine the weights and
threshold that would produce correct answers. Here’s how it
works: Initially, the weights and threshold are set to random
values between −1 and 1. In our example, the weight on the first
input might be set to 0.2, the weight on the second input set to
−0.6, and so on, and the threshold set to 0.7. A computer
program called a random-number generator can easily generate
these initial values.

Now we can start the training process. The first training
example is given to the perceptron; at this point, the perceptron
doesn’t see the correct category label. The perceptron multiplies
each input by its weight, sums up all the results, compares the
sum with the threshold, and outputs either 1 or 0. Here, the
output 1 means a guess of 8, and the output 0 means a guess of
not-8. Now, the training process compares the perceptron’s
output with the correct answer given by the human-provided
label (that is, 8 or not-8). If the perceptron is correct, the weights
and threshold don’t change. But if the perceptron is wrong, the
weights and threshold are changed a little bit, making the
perceptron’s sum on this training example closer to producing
the right answer. Moreover, the amount each weight is changed
depends on its associated input value; that is, the blame for the



error is meted out depending on which inputs had the most
impact. For example, in the 8 of figure 3A, the higher-intensity
(here, black) pixels would have the most impact, and the pixels
with 0 intensity (here, white) would have no impact. (For
interested readers, I have included some mathematical details in
the notes.17)

The whole process is repeated for the next training example.
The training process goes through all the training examples
multiple times, modifying the weights and threshold a little bit
each time the perceptron makes an error. Just as the
psychologist B. F. Skinner found when training pigeons, it’s
better to learn gradually over many trials; if the weights and
threshold are changed too much on any one trial, then the
system might end up learning the wrong thing (such as an
overgeneralization that “the bottom and top halves of an 8 are
always equal in size”). After many repetitions on each training
example, the system eventually (we hope) settles on a set of
weights and a threshold that result in correct answers for all the
training examples. At that point, we can evaluate the perceptron
on the test examples to see how it performs on images it hasn’t
been trained on.

An 8 detector is useful if you care only about 8s. But what
about recognizing other digits? It’s fairly straightforward to
extend our perceptron to have ten outputs, one for each digit.
Given an example handwritten digit, the output corresponding
to that digit should be 1, and all the other outputs should be 0.
This extended perceptron can learn all of its weights and
thresholds using the perceptron-learning algorithm; the system
just needs enough examples.

Rosenblatt and others showed that networks of perceptrons
could learn to perform relatively simple perceptual tasks;
moreover, Rosenblatt proved mathematically that for a certain,
albeit very limited, class of tasks, perceptrons with sufficient
training could, in principle, learn to perform these tasks without



error. What wasn’t clear was how well perceptrons could perform
on more general AI tasks. This uncertainty didn’t seem to stop
Rosenblatt and his funders at the Office of Naval Research from
making ridiculously optimistic predictions about their algorithm.
Reporting on a press conference Rosenblatt held in July 1958,
The New York Times featured this recap:

The Navy revealed the embryo of an electronic computer today that it
expects will be able to walk, talk, see, write, reproduce itself, and be
conscious of its existence. Later perceptrons will be able to recognize
people and call out their names and instantly translate speech in one
language to speech and writing in another language, it was
predicted.18

Yes, even at its beginning, AI suffered from a hype problem. I’ll
talk more about the unhappy results of such hype shortly. But
for now, I want to use perceptrons to highlight a major
difference between symbolic and subsymbolic approaches to AI.

The fact that a perceptron’s “knowledge” consists of a set of
numbers—namely, the weights and threshold it has learned—
means that it is hard to uncover the rules the perceptron is using
in performing its recognition task. The perceptron’s rules are not
symbolic; unlike the General Problem Solver’s symbols, such as
LEFT-BANK, #MISSIONARIES, and MOVE, a perceptron’s weights
and threshold don’t stand for particular concepts. It’s not easy to
translate these numbers into rules that are understandable by
humans. The situation gets much worse with modern neural
networks that have millions of weights.

One might make a rough analogy between perceptrons and
the human brain. If I could open up your head and watch some
subset of your hundred billion neurons firing, I would likely not
get any insight into what you were thinking or the “rules” you
used to make a particular decision. However, the human brain
has given rise to language, which allows you to use symbols
(words and phrases) to tell me—often imperfectly—what your



thoughts are about or why you did a certain thing. In this sense,
our neural firings can be considered subsymbolic, in that they
underlie the symbols our brains somehow create. Perceptrons,
as well as more complicated networks of simulated neurons,
have been dubbed “subsymbolic” in analogy to the brain. Their
advocates believe that to achieve artificial intelligence, language-
like symbols and the rules that govern symbol processing cannot
be programmed directly, as was done in the General Problem
Solver, but must emerge from neural-like architectures similar to
the way that intelligent symbol processing emerges from the
brain.

The Limitations of Perceptrons
After the 1956 Dartmouth meeting, the symbolic camp
dominated the AI landscape. In the early 1960s, while Rosenblatt
was working avidly on the perceptron, the big four “founders” of
AI, all strong devotees of the symbolic camp, had created
influential—and well-funded—AI laboratories: Marvin Minsky at
MIT, John McCarthy at Stanford, and Herbert Simon and Allen
Newell at Carnegie Mellon. (Remarkably, these three universities
remain to this day among the most prestigious places to study
AI.) Minsky, in particular, felt that Rosenblatt’s brain-inspired
approach to AI was a dead end, and moreover was stealing away
research dollars from more worthy symbolic AI efforts.19 In 1969,
Minsky and his MIT colleague Seymour Papert published a book,
Perceptrons,20 in which they gave a mathematical proof showing
that the types of problems a perceptron could solve perfectly
were very limited and that the perceptron-learning algorithm
would not do well in scaling up to tasks requiring a large number
of weights and thresholds.

Minsky and Papert pointed out that if a perceptron is
augmented by adding a “layer” of simulated neurons, the types



of problems that the device can solve is, in principle, much
broader.21 A perceptron with such an added layer is called a
multilayer neural network. Such networks form the foundations
of much of modern AI; I’ll describe them in detail in the next
chapter. But for now, I’ll note that at the time of Minsky and
Papert’s book, multilayer neural networks were not broadly
studied, largely because there was no general algorithm,
analogous to the perceptron-learning algorithm, for learning
weights and thresholds.

The limitations Minsky and Papert proved for simple
perceptrons were already known to people working in this
area.22 Frank Rosenblatt himself had done extensive work on
multilayer perceptrons and recognized the difficulty of training
them.23 It wasn’t Minsky and Papert’s mathematics that put the
final nail in the perceptron’s coffin; rather, it was their
speculation on multilayer neural networks:

[The perceptron] has many features to attract attention: its linearity;
its intriguing learning theorem; its clear paradigmatic simplicity as a
kind of parallel computation. There is no reason to suppose that any
of these virtues carry over to the many-layered version. Nevertheless,
we consider it to be an important research problem to elucidate (or
reject) our intuitive judgment that the extension is sterile.24

Ouch. In today’s vernacular that final sentence might be termed
“passive-aggressive.” Such negative speculations were at least
part of the reason that funding for neural network research
dried up in the late 1960s, at the same time that symbolic AI was
flush with government dollars. In 1971, at the age of forty-three,
Frank Rosenblatt died in a boating accident. Without its most
prominent proponent, and without much government funding,
research on perceptrons and other subsymbolic AI methods
largely halted, except in a few isolated academic groups.

AI Winter



In the meantime, proponents of symbolic AI were writing grant
proposals promising impending breakthroughs in areas such as
speech and language understanding, commonsense reasoning,
robot navigation, and autonomous vehicles. By the mid-1970s,
while some very narrowly focused expert systems were
successfully deployed, the more general AI breakthroughs that
had been promised had not materialized.

The funding agencies noticed. Two reports, solicited
respectively by the Science Research Council in the U.K. and the
Department of Defense in the United States, reported very
negatively on the progress and prospects for AI research. The
U.K. report in particular acknowledged that there was promise in
the area of specialized expert systems—“programs written to
perform in highly specialised problem domains, when the
programming takes very full account of the results of human
experience and human intelligence within the relevant
domain”—but concluded that the results to date were “wholly
discouraging about general-purpose programs seeking to mimic
the problem-solving aspects of human [brain] activity over a
rather wide field. Such a general-purpose program, the coveted
long-term goal of AI activity, seems as remote as ever.”25 This
report led to a sharp decrease in government funding for AI
research in the U.K.; similarly, the Department of Defense
drastically cut funding for basic AI research in the United States.

This was an early example of a repeating cycle of bubbles
and crashes in the field of AI. The two-part cycle goes like this.
Phase 1: New ideas create a lot of optimism in the research
community. Results of imminent AI breakthroughs are promised,
and often hyped in the news media. Money pours in from
government funders and venture capitalists for both academic
research and commercial start-ups. Phase 2: The promised
breakthroughs don’t occur, or are much less impressive than
promised. Government funding and venture capital dry up. Start-
up companies fold, and AI research slows. This pattern became



familiar to the AI community: “AI spring,” followed by
overpromising and media hype, followed by “AI winter.” This has
happened, to various degrees, in cycles of five to ten years.
When I got out of graduate school in 1990, the field was in one
of its winters and had garnered such a bad image that I was
even advised to leave the term “artificial intelligence” off my job
applications.

Easy Things Are Hard
The cold AI winters taught practitioners some important lessons.
The simplest lesson was noted by John McCarthy, fifty years after
the Dartmouth conference: “AI was harder than we thought.”26

Marvin Minsky pointed out that in fact AI research had
uncovered a paradox: “Easy things are hard.” The original goals
of AI—computers that could converse with us in natural
language, describe what they saw through their camera eyes,
learn new concepts after seeing only a few examples—are things
that young children can easily do, but, surprisingly, these “easy
things” have turned out to be harder for AI to achieve than
diagnosing complex diseases, beating human champions at
chess and Go, and solving complex algebraic problems. As
Minsky went on, “In general, we’re least aware of what our minds
do best.”27 The attempt to create artificial intelligence has, at the
very least, helped elucidate how complex and subtle are our own
minds.



2

Neural Networks and the
Ascent of Machine Learning

Spoiler alert: Multilayer neural networks—the extension of
perceptrons that was dismissed by Minsky and Papert as likely to
be “sterile”—have instead turned out to form the foundation of
much of modern artificial intelligence. Because they are the basis
of several of the methods I’ll describe in later chapters, I’ll take
some time here to describe how these networks work.

Multilayer Neural Networks
A network is simply a set of elements that are connected to one
another in various ways. We’re all familiar with social networks,
in which the elements are people, and computer networks, in
which the elements are, naturally, computers. In neural
networks, the elements are simulated neurons akin to the
perceptrons I described in the previous chapter.



FIGURE 4: A two-layer neural network for recognizing handwritten digits

In figure 4, I’ve sketched a simple multilayer neural network,
designed to recognize handwritten digits. The network has two
columns (layers) of perceptron-like simulated neurons (circles).
For simplicity (and probably to the relief of any neuroscientists
reading this), I’ll use the term unit instead of simulated neuron to
describe the elements of this network. Like the 8-detecting
perceptron from chapter 1, the network in figure 4 has 324 (18 ×
18) inputs, each of which is set to the intensity value of the
corresponding pixel in the input image. But unlike the
perceptron, this network has a layer of three so-called hidden



units, along with its layer of ten output units. Each output unit
corresponds to one of the possible digit categories.

The large gray arrows signify that each input has a weighted
connection to each hidden unit, and each hidden unit has a
weighted connection to each output unit. The mysterious-
sounding term hidden unit comes from the neural network
literature; it simply means a non-output unit. A better name
might have been interior unit.

Think of the structure of your brain, in which some neurons
directly control “outputs” such as your muscle movements but
most neurons simply communicate with other neurons. These
could be called the brain’s hidden neurons.

The network shown in figure 4 is referred to as “multilayered”
because it has two layers of units (hidden and output) instead of
just an output layer. In principle, a multilayer network can have
multiple layers of hidden units; networks that have more than
one layer of hidden units are called deep networks. The “depth”
of a network is simply its number of hidden layers. I’ll have much
more to say about deep networks in upcoming chapters.

Similar to perceptrons, each unit here multiplies each of its
inputs by the weight on that input’s connection and then sums
the results. However, unlike in a perceptron, a unit here doesn’t
simply “fire” or “not fire” (that is, produce 1 or 0) based on a
threshold; instead, each unit uses its sum to compute a number
between 0 and 1 that is called the unit’s “activation.” If the sum
that a unit computes is low, the unit’s activation is close to 0; if
the sum is high, the activation is close to 1. (For interested
readers, I’ve included some of the mathematical details in the
notes.1)

To process an image such as the handwritten 8 in figure 4,
the network performs its computations layer by layer, from left
to right. Each hidden unit computes its activation value; these
activation values then become the inputs for the output units,
which then compute their own activations. In the network of



figure 4, the activation of an output unit can be thought of as the
network’s confidence that it is “seeing” the corresponding digit;
the digit category with the highest confidence can be taken as
the network’s answer—its classification.

In principle, a multilayer neural network can learn to use its
hidden units to recognize more abstract features (for example,
visual shapes, such as the top and bottom “circles” on a
handwritten 8) than the simple features (for example, pixels)
encoded by the input. In general, it’s hard to know ahead of time
how many layers of hidden units are needed, or how many
hidden units should be included in a layer, for a network to
perform well on a given task. Most neural network researchers
use a form of trial and error to find the best settings.

Learning via Back-Propagation
In their book Perceptrons, Minsky and Papert were skeptical that
a successful algorithm could be designed for learning the
weights in a multilayer neural network. Their skepticism (along
with doubts from others in the symbolic AI community) was
largely responsible for the sharp decrease in funding for neural
network research in the 1970s. But despite the chilling effect of
Minsky and Papert’s book on the field, a small core of neural
network researchers persisted, especially in Frank Rosenblatt’s
own field of cognitive psychology. And by the late 1970s and
early ’80s, several of these groups had definitively rebutted
Minsky and Papert’s speculations on the “sterility” of multilayer
neural networks by developing a general learning algorithm—
called back-propagation—for training these networks.

As its name implies, back-propagation is a way to take an
error observed at the output units (for example, a high
confidence for the wrong digit in the example of figure 4) and to
“propagate” the blame for that error backward (in figure 4, this



would be from right to left) so as to assign proper blame to each
of the weights in the network. This allows back-propagation to
determine how much to change each weight in order to reduce
the error. Learning in neural networks simply consists in
gradually modifying the weights on connections so that each
output’s error gets as close to 0 as possible on all training
examples. While the mathematics of back-propagation is beyond
the scope of my discussion here, I’ve included some details in
the notes.2

Back-propagation will work (in principle at least) no matter
how many inputs, hidden units, or output units your neural
network has. While there is no mathematical guarantee that
back-propagation will settle on the correct weights for a
network, in practice it has worked very well on many tasks that
are too hard for simple perceptrons. For example, I trained both
a perceptron and a two-layer neural network, each with 324
inputs and 10 outputs, on the handwritten-digit-recognition task,
using sixty thousand examples, and then tested how well each
was able to recognize ten thousand new examples. The
perceptron was correct on about 80 percent of the new
examples, whereas the neural network, with 50 hidden units,
was correct on a whopping 94 percent of those new examples.
Kudos to the hidden units! But what exactly has the neural
network learned that allowed it to soar past the perceptron? I
don’t know. It’s possible that I could find a way to visualize the
neural network’s 16,700 weights3 to get some insight into its
performance, but I haven’t done so, and in general it’s not at all
easy to understand how these networks make their decisions.

It’s important to note that while I’ve used the example of
handwritten digits, neural networks can be applied not just to
images but to any kind of data. Neural networks have been
applied in areas as diverse as speech recognition, stock-market
prediction, language translation, and music composition.



Connectionism
In the 1980s, the most visible group working on neural networks
was a team at the University of California at San Diego headed
by two psychologists, David Rumelhart and James McClelland.
What we now call neural networks were then generally referred
to as connectionist networks, where the term connectionist refers
to the idea that knowledge in these networks resides in
weighted connections between units. The team led by Rumelhart
and McClelland is known for writing the so-called bible of
connectionism—a two-volume treatise, published in 1986, called
Parallel Distributed Processing. In the midst of an AI landscape
dominated by symbolic AI, the book was a pep talk for the
subsymbolic approach, arguing that “people are smarter than
today’s computers because the brain employs a basic
computational architecture that is more suited to … the natural
information-processing tasks that people are so good at,” for
example, “perceiving objects in natural scenes and noting their
relations,… understanding language, and retrieving contextually
appropriate information from memory.”4 The authors speculated
that “symbolic systems such as those favored by Minsky and
Papert”5 would not be able to capture these humanlike abilities.

Indeed, by the mid-1980s, expert systems—symbolic AI
approaches that rely on humans to create rules that reflect
expert knowledge of a particular domain—were increasingly
revealing themselves to be brittle: that is, error-prone and often
unable to generalize or adapt when presented with new
situations. In analyzing the limitations of these systems,
researchers were discovering how much the human experts
writing the rules actually rely on subconscious knowledge—what
you might call common sense—in order to act intelligently. This
kind of common sense could not easily be captured in
programmed rules or logical deduction, and the lack of it
severely limited any broad application of symbolic AI methods.



In short, after a cycle of grand promises, immense funding, and
media hype, symbolic AI was facing yet another AI winter.

According to the proponents of connectionism, the key to
intelligence was an appropriate computational architecture—
inspired by the brain—and the ability of the system to learn on
its own from data or from acting in the world. Rumelhart,
McClelland, and their team constructed connectionist networks
(in software) as scientific models of human learning, perception,
and language development. While these networks did not
exhibit anywhere near human-level performance, the various
networks described in the Parallel Distributed Processing books
and elsewhere were interesting enough as AI artifacts that many
people took notice, including those at funding agencies. In 1988,
a top official at the Defense Advanced Research Projects Agency
(DARPA), which provided the lion’s share of AI funding,
proclaimed, “I believe that this technology which we are about to
embark upon [that is, neural networks] is more important than
the atom bomb.”6 Suddenly neural networks were “in” again.

Bad at Logic, Good at Frisbee
Over the last six decades of AI research, people have repeatedly
debated the relative advantages and disadvantages of symbolic
and subsymbolic approaches. Symbolic systems can be
engineered by humans, be imbued with human knowledge, and
use human-understandable reasoning to solve problems. For
example, MYCIN, an expert system developed in the early 1970s,
was given about six hundred rules that it used to help physicians
diagnose and treat blood diseases. MYCIN’s programmers
developed these rules after painstaking interviews with expert
physicians. Given a patient’s symptoms and medical test results,
MYCIN was able to use both logic and probabilistic reasoning
together with its rules in order to come up with a diagnosis, and



it was able to explain its reasoning process. In short, MYCIN was
a paradigmatic example of symbolic AI.

In contrast, as we’ve seen, subsymbolic systems tend to be
hard to interpret, and no one knows how to directly program
complex human knowledge or logic into these systems.
Subsymbolic systems seem much better suited to perceptual or
motor tasks for which humans can’t easily define rules. You can’t
easily write down rules for identifying handwritten digits,
catching a baseball, or recognizing your mother’s voice; you just
seem to do it automatically, without conscious thought. As the
philosopher Andy Clark put it, the nature of subsymbolic systems
is to be “bad at logic, good at Frisbee.”7

So, why not just use symbolic systems for tasks that require
high-level language-like descriptions and logical reasoning, and
use subsymbolic systems for the low-level perceptual tasks such
as recognizing faces and voices? To some extent, this is what has
been done in AI, with very little connection between the two
areas. Each of these approaches has had important successes in
narrow areas but has serious limitations in achieving the original
goals of AI. While there have been some attempts to construct
hybrid systems that integrate subsymbolic and symbolic
methods, none have yet led to any striking success.

The Ascent of Machine Learning
Inspired by statistics and probability theory, AI researchers
developed numerous algorithms that enable computers to learn
from data, and the field of machine learning became its own
independent subdiscipline of AI, intentionally separate from
symbolic AI. Machine-learning researchers disparagingly
referred to symbolic AI methods as good old-fashioned AI, or
GOFAI (pronounced “go-fye”),8 and roundly rejected them.



Over the next two decades, machine learning had its own
cycles of optimism, government funding, start-ups, and
overpromising, followed by the inevitable winters. Training
neural networks and similar methods to solve real-world
problems could be glacially slow, and often didn’t work very well,
given the limited amount of data and computer power available
at the time. But more data and computing power were coming
shortly. The explosive growth of the internet would see to that.
The stage was set for the next big AI revolution.



3

AI Spring

Spring Fever

Have you ever taken a video of your cat and uploaded it to
YouTube? If so, you are not alone. More than a billion videos
have been uploaded to YouTube, and a lot of them feature cats.
In 2012, an AI team at Google constructed a multilayer neural
network with over a billion weights that “viewed” millions of
random YouTube videos while it adjusted these weights in order
to successfully compress, and then decompress, selected frames
from the videos. The Google researchers didn’t tell the system to
learn about any particular objects, but after a week of training,
when they probed the innards of the network, what did they
find? A “neuron” (unit) that seemed to encode cats.1 This self-
taught cat-recognition machine was one of a series of impressive
AI feats that have captured the public’s attention over the last
decade. Most of these achievements rely on a set of neural
network algorithms known as deep learning.

Until recently, AI’s popular image came largely from the
many movies and TV shows in which it played a starring role;
think 2001: A Space Odyssey or The Terminator. Real-world AI
wasn’t very noticeable in our everyday lives or mainstream
media. If you came of age in the 1990s or earlier, you might
recall frustrating encounters with customer service speech-



recognition systems, the robotic word-learning toy Furby, or
Microsoft’s annoying and ill-fated Clippy, the paper-clip virtual
assistant. Full-blown AI didn’t seem imminent.

Maybe this is why so many people were shocked and upset
when, in 1997, IBM’s Deep Blue chess-playing system defeated
the world chess champion Garry Kasparov. This event so stunned
Kasparov that he accused the IBM team of cheating; he assumed
that for the machine to play so well, it must have received help
from human experts.2 (In a nice bit of irony, during the 2006
World Chess Championship matches the tables were turned,
with one player accusing the other of cheating by receiving help
from a computer chess program.3)

Our collective human angst over Deep Blue quickly receded.
We accepted that chess could yield to brute-force machinery;
playing chess well, we allowed, didn’t require general
intelligence after all. This seems to be a common response when
computers surpass humans on a particular task; we conclude
that the task doesn’t actually require intelligence. As John
McCarthy lamented, “As soon as it works, no one calls it AI
anymore.”4

However, by the mid-2000s and beyond, a more pervasive
succession of AI accomplishments started sneaking up on us and
then proliferating at a dizzying pace. Google launched its
automated language-translation service, Google Translate. It
wasn’t perfect, but it worked surprisingly well, and it has since
improved significantly. Shortly thereafter, Google’s self-driving
cars showed up on the roads of Northern California, careful and
timid, but commuting on their own in full traffic. Virtual
assistants such as Apple’s Siri and Amazon’s Alexa were installed
on our phones and in our homes and could deal with many of
our spoken requests. YouTube started providing impressively
accurate automated subtitles for videos, and Skype offered
simultaneous translation between languages in video calls.
Suddenly Facebook could recognize your face eerily well in



uploaded photos, and the photo-sharing website Flickr began
automatically labeling photos with text describing their content.

In 2011, IBM’s Watson program roundly defeated human
champions on television’s Jeopardy! game show, adroitly
interpreting pun-laden clues and prompting its challenger Ken
Jennings to “welcome our new computer overlords.” Just five
years later, millions of internet viewers were introduced to the
complex game of Go, a longtime grand challenge for AI, when a
program called AlphaGo stunningly defeated one of the world’s
best players in four out of five games.

The buzz over artificial intelligence was quickly becoming
deafening, and the commercial world took notice. All of the
largest technology companies have poured billions of dollars
into AI research and development, either hiring AI experts
directly or acquiring smaller start-up companies for the sole
purpose of grabbing (“acqui-hiring”) their talented employees.
The potential of being acquired, with its promise of instant
millionaire status, has fueled a proliferation of start-ups, often
founded and run by former university professors, each with his
or her own twist on AI. As the technology journalist Kevin Kelly
observed, “The business plans of the next 10,000 startups are
easy to forecast: Take X and add AI.”5 And, crucially, for nearly all
of these companies, AI has meant “deep learning.”

AI spring is once again in full bloom.

AI: Narrow and General, Weak and Strong
Like every AI spring before it, our current one features experts
predicting that “general AI”—AI that equals or surpasses humans
in most ways—will be here soon. “Human level AI will be passed
in the mid-2020s,”6 predicted Shane Legg, cofounder of Google
DeepMind, in 2016. A year earlier, Facebook’s CEO, Mark
Zuckerberg, declared, “One of our goals for the next five to 10



years is to basically get better than human level at all of the
primary human senses: vision, hearing, language, general
cognition.”7 The AI philosophers Vincent Müller and Nick
Bostrom published a 2013 poll of AI researchers in which many
assigned a 50 percent chance of human-level AI by the year
2040.8

While much of this optimism is based on the recent
successes of deep learning, these programs—like all instances of
AI to date—are still examples of what is called “narrow” or “weak”
AI. These terms are not as derogatory as they sound; they simply
refer to a system that can perform only one narrowly defined
task (or a small set of related tasks). AlphaGo is possibly the
world’s best Go player, but it can’t do anything else; it can’t even
play checkers, tic-tac-toe, or Candy Land. Google Translate can
render an English movie review into Chinese, but it can’t tell you
if the reviewer liked the movie or not, and it certainly can’t watch
and review the movie itself.

The terms narrow and weak are used to contrast with strong,
human-level, general, or full-blown AI (sometimes called AGI, or
artificial general intelligence)—that is, the AI that we see in
movies, that can do most everything we humans can do, and
possibly much more. General AI might have been the original
goal of the field, but achieving it has turned out to be much
harder than expected. Over time, efforts in AI have become
focused on particular well-defined tasks—speech recognition,
chess playing, autonomous driving, and so on. Creating
machines that perform such functions is useful and often
lucrative, and it could be argued that each of these tasks
individually requires “intelligence.” But no AI program has been
created yet that could be called intelligent in any general sense.
A recent appraisal of the field stated this well: “A pile of narrow
intelligences will never add up to a general intelligence. General
intelligence isn’t about the number of abilities, but about the
integration between those abilities.”9



But wait. Given the rapidly increasing pile of narrow
intelligences, how long will it be before someone figures out how
to integrate them and produce all of the broad, deep, and subtle
features of human intelligence? Do we believe the cognitive
scientist Steven Pinker, who thinks all this is business as usual?
“Human-level AI is still the standard fifteen to twenty-five years
away, just as it always has been, and many of its recently touted
advances have shallow roots,” Pinker declared.10 Or should we
pay more attention to the AI optimists, who are certain that this
time around, this AI spring, things will be different?

Not surprisingly, in the AI research community there is
considerable controversy over what human-level AI would entail.
How can we know if we have succeeded in building such a
“thinking machine”? Would such a system be required to have
consciousness or self-awareness in the way humans do? Would it
need to understand things in the same way a human
understands them? Given that we’re talking about a machine
here, would we be more correct to say it is “simulating thought,”
or could we say it is truly thinking?

Could Machines Think?
Such philosophical questions have dogged the field of AI since
its inception. Alan Turing, the British mathematician who in the
1930s sketched out the first framework for programmable
computers, published a paper in 1950 asking what we might
mean when we ask, “Can machines think?” After proposing his
famous “imitation game” (now called the Turing test—more on
this in a bit), Turing listed nine possible objections to the
prospect of a machine actually thinking, all of which he tried to
refute. These imagined objections range from the theological
—“Thinking is a function of man’s immortal soul. God has given
an immortal soul to every man and woman, but not to any other



animal or to machines. Hence no animal or machine can think”—
to the parapsychological, something along the lines of “Humans
can use telepathy to communicate while machines cannot.”
Strangely enough, Turing judged this last argument as “quite a
strong one,” because “the statistical evidence, at least for
telepathy, is overwhelming.”

From the vantage of many decades, my own vote for the
strongest of Turing’s possible arguments is the “argument from
consciousness,” which he summarizes by quoting the
neurologist Geoffrey Jefferson:

Not until a machine can write a sonnet or compose a concerto
because of thoughts and emotions felt, and not by the chance fall of
symbols, could we agree that machine equals brain—that is, not only
write it but know that it had written it. No mechanism could feel (and
not merely artificially signal, an easy contrivance) pleasure at its
successes, grief when its valves fuse, be warmed by flattery, be made
miserable by its mistakes, be charmed by sex, be angry or depressed
when it cannot get what it wants.11

Note that this argument is saying the following: (1) Only when a
machine feels things and is aware of its own actions and feelings
—in short, is conscious—could we consider it actually thinking,
and (2) No machine could ever do this. Ergo, no machine could
ever actually think.

I think it’s a strong argument, even though I don’t agree with
it. It resonates with our intuitions about what machines are and
how they are limited. Over the years, I’ve talked with any number
of friends, relatives, and students about the possibility of
machine intelligence, and this is the argument many of them
stand by. For example, I was recently talking with my mother, a
retired lawyer, after she had read a New York Times article about
advances in the Google Translate program:

MOM: The problem with people in the field of AI is that they
anthropomorphize so much!



ME: What do you mean, anthropomorphize?
MOM: The language they use implies that machines might be

able to actually think, rather than to just simulate thinking.
ME: What’s the difference between “actually thinking” and

“simulating thinking”?
MOM: Actual thinking is done with a brain, and simulating is

done with computers.
ME: What’s so special about a brain that it allows “actual”

thinking? What’s missing in computers?
MOM: I don’t know. I think there’s a human quality to thinking

that can’t ever be completely mimicked by computers.

My mother isn’t the only one who has this intuition. In fact,
to many people it seems so obvious as to require no argument.
And like many of these people, my mother would claim to be a
philosophical materialist; that is, she doesn’t believe in any
nonphysical “soul” or “life force” that imbues living things with
intelligence. It’s just that she doesn’t think machines could ever
have the right stuff to “actually think.”

In the academic realm, the most famous version of this
argument was put forth by the philosopher John Searle. In 1980,
Searle published an article called “Minds, Brains, and
Programs”12 in which he vigorously argued against the possibility
of machines actually thinking. In this widely read, controversial
piece, Searle introduced the concepts of “strong” and “weak” AI
in order to distinguish between two philosophical claims made
about AI programs. While many people today use the phrase
strong AI to mean “AI that can perform most tasks as well as a
human” and weak AI to mean the kind of narrow AI that currently
exists, Searle meant something different by these terms. For
Searle, the strong AI claim would be that “the appropriately
programmed digital computer does not just simulate having a
mind; it literally has a mind.”13 In contrast, in Searle’s



terminology, weak AI views computers as tools to simulate
human intelligence and does not make any claims about them
“literally” having a mind.14 We’re back to the philosophical
question I was discussing with my mother: Is there a difference
between “simulating a mind” and “literally having a mind”? Like
my mother, Searle believes there is a fundamental difference,
and he argued that strong AI is impossible even in principle.15

The Turing Test
Searle’s article was spurred in part by Alan Turing’s 1950 paper,
“Computing Machinery and Intelligence,” which had proposed a
way to cut through the Gordian knot of “simulated” versus
“actual” intelligence. Declaring that “the original question ‘Can a
machine think?’ is too meaningless to deserve discussion,”
Turing proposed an operational method to give it meaning. In
his “imitation game,” now called the Turing test, there are two
contestants: a computer and a human. Each is questioned
separately by a (human) judge who tries to determine which is
which. The judge is physically separated from the two
contestants so cannot rely on visual or auditory cues; only typed
text is communicated.

Turing suggested the following: “The question, ‘Can
machines think?’ should be replaced by ‘Are there imaginable
digital computers which would do well in the imitation game?’”
In other words, if a computer is sufficiently humanlike to be
indistinguishable from humans, aside from its physical
appearance or what it sounds like (or smells or feels like, for that
matter), why shouldn’t we consider it to actually think? Why
should we require an entity to be created out of a particular kind
of material (for example, biological cells) to grant it “thinking”
status? As the computer scientist Scott Aaronson put it bluntly,
Turing’s proposal is “a plea against meat chauvinism.”16



The devil is always in the details, and the Turing test is no
exception. Turing did not specify the criteria for selecting the
human contestant and the judge, or stipulate how long the test
should last, or what conversational topics should be allowed.
However, he did make an oddly specific prediction: “I believe that
in about 50 years’ time it will be possible to programme
computers … to make them play the imitation game so well that
an average interrogator will not have more than 70 percent
chance of making the right identification after five minutes of
questioning.” In other words, in a five-minute session, the
average judge will be fooled 30 percent of the time.

Turing’s prediction has turned out to be pretty accurate.
Several Turing tests have been staged over the years, in which
the computer contestants are chatbots—programs specifically
built to carry on conversations (they can’t do anything else). In
2014, the Royal Society in London was host to a Turing test
demonstration featuring five computer programs, thirty human
contestants, and thirty human judges of different ages and
walks of life, including computer experts and nonexperts, as well
as native and nonnative English speakers. Each judge conducted
several rounds of five-minute conversations in which he or she
conversed (by typing) in parallel with a pair of contestants—one
human and one machine—after which the judge had to guess
which was which. A chatbot named “Eugene Goostman,” created
by a group of Russian and Ukrainian programmers, won the
competition by fooling ten (or 33.3 percent) of the judges. The
competition organizers, following Turing’s “more than 30 percent
fooled in five minutes” criterion, quickly flooded the media with
reports that the Turing test had finally been passed.

The Eugene Goostman chatbot works in much the same way
as most other chatbots. It stores a large set of sentence
templates that can be filled in based on a set of programmed
rules that are applied to the input text it gets from its
conversation partner. The chatbot’s programmers have given it



linguistic rules that allow it to pinpoint key information in its
input and to store that information for later use. In addition, the
chatbot stores a database of “commonsense knowledge,”
encoded by human programmers, along with some logic rules;
these would presumably allow it to answer questions like “What
color is the sky over Vladivostok?” with the human-sounding
“Blue, I suppose, unless it’s a cloudy day.” If none of the chatbot’s
rules apply to an input, it just changes the subject. The system’s
rules also encode its “personality”—in this case, a thirteen-year-
old Ukrainian boy whose English is good but (conveniently) not
perfect. Here is a sample of Eugene Goostman’s conversation
with one of the judges who was fooled:

JUDGE: What is your gender
EUGENE: I’m a young boy, if you care to know. And not very ugly,

by the way!
JUDGE: what are you aware of at this moment
EUGENE: I would rather not talk about it if you don’t mind. Could

you tell me what are you? I mean your profession.
JUDGE: how old are you
EUGENE: I’m a little boy 13 years old.
JUDGE: what are your qualifications
EUGENE: My qualifications? I’m not gonna tell you. Oooh.

Anything else?17

After the competition, the organizers issued a press release
announcing, “The 65-year-old iconic Turing Test was passed for
the very first time by computer programme Eugene Goostman,”
and stating, “It is fitting that such an important landmark has
been reached at the Royal Society in London, the home of British
Science and the scene of many great advances in human



understanding over the centuries. This milestone will go down in
history as one of the most exciting.”18

AI experts unanimously scoffed at this characterization. To
anyone familiar with how chatbots are programmed, it’s
glaringly obvious from the competition transcripts that Eugene
Goostman is a program, and not even a very sophisticated one.
The result seemed to reveal more about the judges and the test
itself than about the machines. Given five minutes and a
propensity to avoid hard questions by changing the subject or by
responding with a new question, the program had a surprisingly
easy time fooling a nonexpert judge into believing he or she was
conversing with a real person. This has been demonstrated with
many chatbots, ranging from the 1970s ELIZA, which mimicked a
psychotherapist, to today’s malevolent Facebook bots, which use
short text exchanges to trick people into revealing personal
information.

These bots are, of course, leveraging our very human
tendency to anthropomorphize (you were right, Mom!). We are
all too willing to ascribe understanding and consciousness to
computers, based on little evidence.

For these reasons, most AI experts hate the Turing test, at
least as it has been carried out to date. They see such
competitions as publicity stunts whose results say nothing about
progress in AI. But while Turing might have overestimated the
ability of an “average interrogator” to see through superficial
trickery, could the test still be a useful indicator of actual
intelligence if the conversation time is extended and the
required expertise of the judges is raised?

Ray Kurzweil, who is now director of engineering at Google,
believes that a properly designed version of the Turing test will
indeed reveal machine intelligence; he predicts that a computer
will pass this test by 2029, a milestone event on the way to
Kurzweil’s forecasted Singularity.



The Singularity
Ray Kurzweil has long been AI’s leading optimist. A former
student of Marvin Minsky’s at MIT, Kurzweil has had a
distinguished career as an inventor: he invented the first text-to-
speech machine as well as one of the world’s best music
synthesizers. In 1999, President Bill Clinton awarded Kurzweil the
National Medal of Technology and Innovation for these and
other inventions.

Yet Kurzweil is best known not for his inventions but for his
futurist prognostications, most notably the idea of the
Singularity: “a future period during which the pace of
technological change will be so rapid, its impact so deep, that
human life will be irreversibly transformed.”19 Kurzweil uses the
term singularity in the sense of “a unique event with … singular
implications”; in particular, “an event capable of rupturing the
fabric of human history.”20 For Kurzweil, this singular event is the
point in time when AI exceeds human intelligence.

Kurzweil’s ideas were spurred by the mathematician I. J.
Good’s speculations on the potential of an intelligence explosion:
“Let an ultraintelligent machine be defined as a machine that can
far surpass all the intellectual activities of any man however
clever. Since the design of machines is one of these intellectual
activities, an ultraintelligent machine could design even better
machines; there would then unquestionably be an ‘intelligence
explosion,’ and the intelligence of man would be left far
behind.”21

Kurzweil was also influenced by the mathematician and
science fiction writer Vernor Vinge, who believed this event was
close at hand: “The evolution of human intelligence took millions
of years. We will devise an equivalent advance in a fraction of
that time. We will soon create intelligences greater than our
own. When this happens, human history will have reached a kind



of singularity  … and the world will pass far beyond our
understanding.”22

Kurzweil takes the intelligence explosion as his starting point
and then turns up the sci-fi intensity, moving from AI to
nanoscience, then to virtual reality and “brain uploading,” all in
the same calm, confident tone of a Delphic oracle looking at a
calendar and pointing to specific dates. To give you the flavor of
all this, here are some of Kurzweil’s predictions:

By the 2020s molecular assembly will provide tools to effectively
combat poverty, clean up our environment, overcome disease, [and]
extend human longevity.

By the end of the 2030s  … brain implants based on massively
distributed intelligent nanobots will greatly expand our memories and
otherwise vastly improve all our sensory, pattern-recognition, and
cognitive abilities.

Uploading a human brain means scanning all of its salient details and
then reinstantiating those details into a suitably powerful
computational substrate.… The end of the 2030s is a conservative
projection for successful [brain] uploading.23

A computer will pass the Turing test by 2029.24

As we get to the 2030s, artificial consciousness will be very realistic.
That’s what it means to pass the Turing test.25

I set the date for the Singularity  … as 2045. The nonbiological
intelligence created in that year will be one billion times more
powerful than all human intelligence today.26

The writer Andrian Kreye wryly referred to Kurzweil’s Singularity
prediction as “nothing more than the belief in a technological
Rapture.”27



Kurzweil bases all of his predictions on the idea of
“exponential progress” in many areas of science and technology,
especially computers. To unpack this idea, let’s consider how
exponential growth works.

An Exponential Fable
For a simple illustration of exponential growth, I’ll recount an old
fable. Long ago, a renowned sage from a poor and starving
village visited a distant and rich kingdom where the king
challenged him to a game of chess. The sage was reluctant to
accept, but the king insisted, offering the sage a reward “of
anything you desire, if you are able to defeat me in a game.” For
the sake of his village, the sage finally accepted and (as sages
usually do) won the game. The king asked the sage to name his
reward. The sage, who enjoyed mathematics, said, “All I ask for is
that you take this chessboard, put two grains of rice on the first
square, four grains on the second square, eight grains on the
third, and so on, doubling the number of grains on each
successive square. After you complete each row, package up the
rice on that row and ship it to my village.” The mathematically
naive king laughed. “Is that all you want? I will have my men
bring in some rice and fulfill your request posthaste.”

The king’s men brought in a large bag of rice. After several
minutes they had completed the first eight squares of the board
with the requisite grains of rice: 2 on the first square, 4 on the
second, 8 on the third, and so on, with 256 grains on the eighth
square. They put the collection of grains (511, to be exact) in a
tiny bag and sent it off by horseback to the sage’s village. They
then proceeded on to the second row, with 512 grains on the
first square of that row, 1,024 grains on the next square, and
2,048 grains on the following. Each pile of rice no longer fit on a
chessboard square, so it was counted into a large bowl instead.



By the end of the second row, the counting of grains was taking
far too much time, so the court mathematicians started
estimating the amounts by weight. They calculated that for the
sixteenth square, 65,536 grains—about a kilogram (just over two
pounds)—were required. The bag of rice shipped off for the
second row weighed about two kilograms.

The king’s men started on the third row. The seventeenth
square required 2 kilos, the eighteenth required 4, and so on; by
the end of the third row (square 24), 512 kilos were needed. The
king’s subjects were conscripted to bring in additional giant bags
of rice. The situation had become dire by the second square of
the fourth row (square 26), when the mathematicians calculated
that 2,048 kilos (over two tons) of rice were required. This would
exhaust the entire rice harvest of the kingdom, even though the
chessboard was not even half completed. The king, now realizing
the trick that had been played on him, begged the sage to relent
and save the kingdom from starvation. The sage, satisfied that
the rice already received by his village would be enough, agreed.

Figure 5A plots the number of kilos of rice required on each
chess square, up to the twenty-fourth square. The first square,
with two rice grains, has a scant fraction of a kilo. Similarly, the
squares up through 16 have less than 1 kilo. But after square 16,
you can see the plot shoot up rapidly, due to the doubling effect.
Figure 5B shows the values for the twenty-fourth through the
sixty-fourth chess square, going from 512 kilos to more than 30
trillion kilos.

The mathematical function describing this graph is y = 2x,
where x is the chess square (numbered from 1 to 64) and y is the
number of rice grains required on that square. This is called an
exponential function, because x is the exponent of the number 2.
No matter what scale is plotted, the function will have a
characteristic point at which the curve seems to change from
slow to explosively fast growth.



FIGURE 5: Plots showing how many kilos of rice are needed for each chess
square in order to fulfill the sage’s request; A, squares 1–24 (with y-axis

showing hundreds of kilos); B, squares 24–64 (with y-axis showing tens of
trillions of kilos)

Exponential Progress in Computers
For Ray Kurzweil, the computer age has provided a real-world
counterpart to the exponential fable. In 1965, Gordon Moore,
cofounder of Intel Corporation, identified a trend that has come
to be known as Moore’s law: the number of components on a
computer chip doubles approximately every one to two years. In
other words, the components are getting exponentially smaller



(and cheaper), and computer speed and memory are increasing
at an exponential rate.

Kurzweil’s books are full of graphs like the ones in figure 5,
and extrapolations of these trends of exponential progress,
along the lines of Moore’s law, are at the heart of his forecasts
for AI. Kurzweil points out that if the trends continue (as he
believes they will), a $1,000 computer will “achieve human brain
capability (1016 calculations per second)  … around the year
2023.”28 At that point, in Kurzweil’s view, human-level AI will just
be a matter of reverse engineering the brain.

Neural Engineering
Reverse engineering the brain means understanding enough
about its workings in order to duplicate it, or at least to use the
brain’s underlying principles to replicate its intelligence in a
computer. Kurzweil believes that such reverse engineering is a
practical, near-term approach to creating human-level AI. Most
neuroscientists would vehemently disagree, given how little is
currently known about how the brain works. But Kurzweil’s
argument again rests on exponential trends—this time in
advancements in neuroscience. In 2002 he wrote, “A careful
analysis of the requisite trends shows that we will understand
the principles of operation of the human brain and be in a
position to recreate its powers in synthetic substances well
within thirty years.”29

Few if any neuroscientists agree on this optimistic prediction
for their field. But even if a machine operating on the brain’s
principles can be created, how will it learn all the stuff it needs to
know to be considered intelligent? After all, a newborn baby has
a brain, but it doesn’t yet have what we’d call human-level
intelligence. Kurzweil agrees: “Most of [the brain’s] complexity
comes from its own interaction with a complex world. Thus, it



will be necessary to provide an artificial intelligence with an
education just as we do with a natural intelligence.”30

Of course, providing an education can take many years.
Kurzweil thinks that the process can be vastly sped up.
“Contemporary electronics is already more than ten million times
faster than the human nervous system’s electrochemical
information processing. Once an AI masters human basic
language skills, it will be in a position to expand its language
skills and general knowledge by rapidly reading all human
literature and by absorbing the knowledge contained on millions
of web sites.”31

Kurzweil is vague on how all this will happen but assures us
that to achieve human-level AI, “we will not program human
intelligence link by link as in some massive expert system.
Rather, we will set up an intricate hierarchy of self-organizing
systems, based largely on the reverse engineering of the human
brain, and then provide for its education  … hundreds if not
thousands of times faster than the comparable process for
humans.”32

Singularity Skeptics and Adherents
Responses to Kurzweil’s books The Age of Spiritual Machines
(1999) and The Singularity Is Near (2005) are often one of two
extremes: enthusiastic embrace or dismissive skepticism. When I
read Kurzweil’s books, I was (and still am) in the latter camp. I
wasn’t at all convinced by his surfeit of exponential curves or his
arguments for reverse engineering the brain. Yes, Deep Blue had
defeated Kasparov in chess, but AI was far below the level of
humans in most other domains. Kurzweil’s predictions that AI
would equal us in a mere couple of decades seemed to me
ridiculously optimistic.



Most of the people I know are similarly skeptical. Mainstream
AI’s attitude is perfectly captured in an article by the journalist
Maureen Dowd: she describes how Andrew Ng, a famous AI
researcher from Stanford, rolled his eyes at her mention of
Kurzweil, saying, “Whenever I read Kurzweil’s Singularity, my eyes
just naturally do that.”33

On the other hand, Kurzweil’s ideas have many adherents.
Most of his books have been bestsellers and have been
positively reviewed in serious publications. Time magazine
declared of the Singularity, “It’s not a fringe idea; it’s a serious
hypothesis about the future of life on Earth.”34

Kurzweil’s thinking has been particularly influential in the
tech industry, where people often believe in exponential
technological progress as the means to solve all of society’s
problems. Kurzweil is not only a director of engineering at
Google but also a cofounder (with his fellow futurist
entrepreneur Peter Diamandis) of Singularity University (SU), a
“trans-humanist” think tank, start-up incubator, and sometime
summer camp for the tech elite. SU’s published mission is “to
educate, inspire, and empower leaders to apply exponential
technologies to address humanity’s grand challenges.”35 The
organization is partially underwritten by Google; Larry Page
(cofounder of Google) was an early supporter and is a frequent
speaker at SU’s programs. Several other big-name technology
companies have joined as sponsors.

Douglas Hofstadter is one thinker who—again surprising me
—straddles the fence between Singularity skepticism and worry.
He was disturbed, he told me, that Kurzweil’s books “mixed in
the zaniest science fiction scenarios with things that were very
clearly true.” When I argued, Hofstadter pointed out that from
the vantage of several years later, for every seemingly crazy
prediction Kurzweil made, he also often predicted something
that has surprisingly come true or will soon. By the 2030s, will
“‘experience beamers’  … send the entire flow of their sensory



experiences as well as the neurological correlates of their
emotional reactions out onto the Web”?36 Sounds crazy. But in
the late 1980s, Kurzweil, relying on his exponential curves,
predicted that by 1998 “a computer will defeat the human world
chess champion … and we’ll think less of chess as a result.”37 At
the time, many thought that sounded crazy too. But this event
occurred a year earlier than Kurzweil predicted.

Hofstadter has noted Kurzweil’s clever use of what
Hofstadter calls the “Christopher Columbus ploy,”38 referring to
the Ira Gershwin song “They All Laughed,” which includes the
line “They all laughed at Christopher Columbus.” Kurzweil cites
numerous quotations from prominent people in history who
completely underestimated the progress and impact of
technology. Here are a few examples. IBM’s chairman, Thomas J.
Watson, in 1943: “I think there is a world market for maybe five
computers.” Digital Equipment Corporation’s cofounder Ken
Olsen in 1977: “There’s no reason for individuals to have a
computer in their home.” Bill Gates in 1981: “640,000 bytes of
memory ought to be enough for anybody.”39 Hofstadter, having
been stung by his own wrong predictions on computer chess,
was hesitant to dismiss Kurzweil’s ideas out of hand, as crazy as
they sounded. “Like Deep Blue’s defeat of Kasparov, it certainly
gives one pause for thought.”40

Wagering on the Turing Test
As a career choice, “futurist” is nice work if you can get it. You
write books making predictions that can’t be evaluated for
decades and whose ultimate validity won’t affect your reputation
—or your book sales—in the here and now. In 2002, a website
called Long Bets was created to help keep futurists honest. Long
Bets is “an arena for competitive, accountable predictions,”41

allowing a predictor to make a long-term prediction that specifies



a date and a challenger to challenge the prediction, both putting
money on a wager that will be paid off after the prediction’s date
is passed. The site’s very first predictor was the software
entrepreneur Mitchell Kapor. He made a negative prediction: “By
2029 no computer—or ‘machine intelligence’—will have passed
the Turing Test.” Kapor, who had founded the successful
software company Lotus and who is also a longtime activist on
internet civil liberties, knew Kurzweil well and was on the “highly
skeptical” side of the Singularity divide. Kurzweil agreed to be
the challenger for this public bet, with $20,000 going to the
Electronic Frontier Foundation (cofounded by Kapor) if Kapor
wins and to the Kurzweil Foundation if Kurzweil wins. The test to
determine the winner will be carried out before the end of 2029.

In making this wager, Kapor and Kurzweil had to—unlike
Turing—specify carefully in writing how their Turing test would
work. They begin with a few necessary definitions. “A Human is a
biological human person as that term is understood in the year
2001 whose intelligence has not been enhanced through the use
of machine (i.e., nonbiological) intelligence.… A Computer is any
form of nonbiological intelligence (hardware and software) and
may include any form of technology, but may not be a biological
Human (enhanced or otherwise) nor biological neurons
(however, nonbiological emulations of biological neurons are
allowed).”42

The terms of the wager also specify that the test will be
carried out by three human judges who will interview the
computer contestant as well as three human “foils.” All four
contestants will try to convince the judges that they are humans.
The judges and human foils will be chosen by a “Turing test
committee,” made up of Kapor, Kurzweil (or their designees),
and a third member. Instead of five-minute chats, each of the
four contestants will be interviewed by each judge for a grueling
two hours. At the end of all these interviews, each judge will give
his or her verdict (“human” or “machine”) for each contestant.



“The Computer will be deemed to have passed the ‘Turing Test
Human Determination Test’ if the Computer has fooled two or
more of the three Human Judges into thinking that it is a
human.”43

But we’re not done yet:

In addition, each of the three Turing Test Judges will rank the four
Candidates with a rank from 1 (least human) to 4 (most human). The
computer will be deemed to have passed the “Turing Test Rank Order
Test” if the median rank of the Computer is equal to or greater than
the median rank of two or more of the three Turing Test Human Foils.

The Computer will be deemed to have passed the Turing Test if it
passes both the Turing Test Human Determination Test and the Turing
Test Rank Order Test.

If a Computer passes the Turing Test, as described above, prior to the
end of the year 2029, then Ray Kurzweil wins the wager. Otherwise
Mitchell Kapor wins the wager.44

Wow, pretty strict. Eugene Goostman wouldn’t stand a chance.
I’d have to (cautiously) agree with this assessment from Kurzweil:
“In my view, there is no set of tricks or simpler algorithms (i.e.,
methods simpler than those underlying human intelligence) that
would enable a machine to pass a properly designed Turing Test
without actually possessing intelligence at a fully human level.”45

In addition to laying out the rules of their long bet, both
Kapor and Kurzweil wrote accompanying essays giving the
reasons each thinks he will win. Kurzweil’s essay summarizes the
arguments laid out in his books: exponential progress in
computation, neuroscience, and nanotechnology, which taken
together will allow for reverse engineering of the brain.

Kapor doesn’t buy it. His main argument centers on the
influence of our (human) physical bodies and emotions on our
cognition. “Perception of and [physical] interaction with the
environment is the equal partner of cognition in shaping



experience.… [Emotions] bound and shape the envelope of what
is thinkable.”46 Kapor asserts that without the equivalent of a
human body, and everything that goes along with it, a machine
will never be able to learn all that’s needed to pass his and
Kurzweil’s strict Turing test.

I assert that the fundamental mode of learning of human beings is
experiential. Book learning is a layer on top of that.… If human
knowledge, especially knowledge about experience, is largely tacit,
i.e., never directly and explicitly expressed, it will not be found in
books, and the Kurzweil approach to knowledge acquisition will fail.…
It is not in what the computer knows but what the computer does not
know and cannot know wherein the problem resides.47

Kurzweil responds that he agrees with Kapor on the role of
experiential learning, tacit knowledge, and emotions but
believes that before the 2030s virtual reality will be “totally
realistic,”48 enough to re-create the physical experiences needed
to educate a developing artificial intelligence. (Welcome to the
Matrix.) Moreover, this artificial intelligence will have a reverse-
engineered artificial brain with emotion as a key component.

Are you, like Kapor, skeptical of Kurzweil’s predictions?
Kurzweil says it’s because you don’t understand exponentials.
“Generally speaking, the core of a disagreement I’ll have with a
critic is, they’ll say, Oh Kurzweil is underestimating the
complexity of reverse-engineering the human brain or the
complexity of biology. But I don’t believe I’m underestimating the
challenge. I think they’re underestimating the power of
exponential growth.”49

Kurzweil’s doubters point out a couple of holes in this
argument. Indeed, computer hardware has seen exponential
progress over the last five decades, but there are many reasons
to believe this trend will not hold up in the future. (Kurzweil of
course disputes this.) But more important, computer software
has not shown the same exponential progress; it would be hard
to argue that today’s software is exponentially more



sophisticated, or brain-like, than the software of fifty years ago,
or that such a trend has ever existed. Kurzweil’s claims about
exponential trends in neuroscience and virtual reality are also
widely disputed.

But as Singularitarians have pointed out, sometimes it’s hard
to see an exponential trend if you’re in the midst of it. If you look
at an exponential curve like the ones in figure 5, Kurzweil and his
adherents imagine that we’re at that point where the curve is
increasing slowly, and it looks like incremental progress to us,
but it’s deceptive: the growth is about to explode.

Is the current AI spring, as many have claimed, the first
harbinger of a coming explosion? Or is it simply a waypoint on a
slow, incremental growth curve that won’t result in human-level
AI for at least another century? Or yet another AI bubble, soon
to be followed by another AI winter?

To help us get some bearing on these questions, we need to
take a careful look at some of the crucial abilities underlying our
distinctive human intelligence, such as perception, language,
decision-making, commonsense reasoning, and learning. In the
next chapters, we’ll see how far AI has come in capturing these
abilities, and we’ll assess its prospects, for 2029 and beyond.



Part II

Looking and Seeing



4

Who, What, When, Where, Why

Look at the photo in figure 6 and tell me what you see. A woman
petting a dog. A soldier petting a dog. A soldier who has just
returned from war being welcomed by her dog, with flowers and
a “Welcome Home” balloon. The soldier’s face shows her
complex emotions. The dog is happily wagging its tail.

When was this photo taken? Most likely within the past ten
years. Where does this photo take place? Probably an airport.
Why is the soldier petting the dog? She has probably been away
for a long time, experienced many things, both good and bad,
missed her dog a great deal, and is very happy to be home.
Perhaps the dog is a symbol of all that is “home.” What
happened just before this photo was taken? The soldier probably
got off an airplane and walked through the secure part of the
airport to the place where passengers can be greeted. Her family
or friends greeted her with hugs, handed her the flowers and
balloon, and let go of the dog’s leash. The dog came over to the
soldier, who put down everything she was carrying and knelt
down, carefully putting the balloon’s string under her knee to
keep it from floating off. What will happen next? She’ll probably
stand up, maybe wipe away some tears, gather her flowers,
balloon, and laptop computer, take the dog’s leash, and walk
with the dog and her family or friends to the baggage claim
area.



FIGURE 6: What do you see in this photo?

When you look at this picture, at the most basic level you’re
seeing bits of ink on a page (or pixels on a screen). Somehow
your eyes and brain are able to take in this raw information and,
within a few seconds, transform it into a detailed story involving
living things, objects, relationships, places, emotions,
motivations, and past and future actions. We look, we see, we
understand. Crucially, we know what to ignore. There are many
aspects of the photo that aren’t strictly relevant to the story we
extract from it: the pattern on the carpet, the hanging straps on
the soldier’s backpack, the whistle clipped to her pack’s shoulder
pad, the barrettes in her hair.

We humans perform this vast amount of information
processing in hardly any time at all, and we have very little, if
any, conscious awareness of what we’re doing or how we do it.
Unless you’ve been blind since birth, visual processing, at various
levels of abstraction, dominates your brain.

Surely, the ability to describe the contents of a photograph
(or a video, or a real-time stream from a camera) in this way



would be one of the first things we would require for general
human-level AI.

Easy Things Are Hard (Especially in Vision)
Since the 1950s, AI researchers have been trying to get
computers to make sense of visual data. In the early days of AI,
achieving this goal seemed relatively straightforward. In 1966,
Marvin Minsky and Seymour Papert—the symbolic-AI-promoting
MIT professors whom you’ll recall from chapter 1—proposed the
Summer Vision Project, in which they would assign
undergraduates to work on “the construction of a significant
part of a visual system.”1 In the words of one AI historian,
“Minsky hired a first-year undergraduate and assigned him a
problem to solve over the summer: connect a television camera
to a computer and get the machine to describe what it sees.”2

The undergraduate didn’t get very far. And while the subfield
of AI called computer vision has progressed substantially over
the many decades since this summer project, a program that can
look at and describe photographs in the way humans do still
seems far out of reach. Vision—both looking and seeing—turns
out to be one of the hardest of all “easy” things.

One prerequisite to describing visual input is object
recognition—that is, recognizing a particular group of pixels in an
image as a particular object category, such as “woman,” “dog,”
“balloon,” or “laptop computer.” Object recognition is typically so
immediate and effortless for us as humans that it didn’t seem as
though it would be a particularly hard problem for computers,
until AI researchers actually tried to get computers to do it.

What’s so hard about object recognition? Well, consider the
problem of getting a computer program to recognize dogs in
photographs. Figure 7 illustrates some of the difficulties. If the
input is simply the pixels of the image, then the program first



has to figure out which are “dog” pixels and which are “non-dog”
pixels (for example, background, shadows, other objects).
Moreover, different dogs look very different: they can have
diverse coloring, shape, and size; they can be facing in various
directions; the lighting can vary considerably between images;
parts of the dog can be blocked by other objects (for example,
fences, people). What’s more, “dog pixels” might look a lot like
“cat pixels” or other animals. Under some lighting conditions, a
cloud in the sky might even look very much like a dog.

FIGURE 7: Object recognition: easy for humans, hard for computers

Since the 1950s, the field of computer vision has struggled
with these and other issues. Until recently, a major job of
computer-vision researchers was to develop specialized image-
processing algorithms that would identify “invariant features” of
objects that could be used to recognize these objects in spite of
the difficulties I sketched above. But even with sophisticated
image processing, the abilities of object-recognition programs
remained far below those of humans.

The Deep-Learning Revolution
The ability of machines to recognize objects in images and
videos underwent a quantum leap in the 2010s due to advances
in the area called deep learning.

Deep learning simply refers to methods for training “deep
neural networks,” which in turn refers to neural networks with
more than one hidden layer. Recall that hidden layers are those



layers of a neural network between the input and the output.
The depth of a network is its number of hidden layers: a
“shallow” network—like the one we saw in chapter 2—has only
one hidden layer; a “deep” network has more than one hidden
layer. It’s worth emphasizing this definition: the deep in deep
learning doesn’t refer to the sophistication of what is learned; it
refers only to the depth in layers of the network being trained.

Research on deep neural networks has been going on for
several decades. What makes these networks a revolution is
their recent phenomenal success in many AI tasks. Interestingly,
researchers have found that the most successful deep networks
are those whose structure mimics parts of the brain’s visual
system. The “traditional” multilayer neural networks I described
in chapter 2 were inspired by the brain, but their structure is very
un-brain-like. In contrast, the neural networks dominating deep
learning are directly modeled after discoveries in neuroscience.

The Brain, the Neocognitron, and
Convolutional Neural Networks

About the same time that Minsky and Papert were proposing
their Summer Vision Project, two neuroscientists were in the
midst of a decades-long study that would radically remake our
understanding of vision—and particularly object recognition—in
the brain. David Hubel and Torsten Wiesel were later awarded a
Nobel Prize for their discoveries of hierarchical organization in
the visual systems of cats and primates (including humans) and
for their explanation of how the visual system transforms light
striking the retina into information about what is in the scene.

Hubel and Wiesel’s discoveries inspired a Japanese engineer
named Kunihiko Fukushima, who in the 1970s developed one of
the earliest deep neural networks, dubbed the cognitron, and its
successor, the neocognitron. In his papers,3 Fukushima reported



some success training the neocognitron to recognize
handwritten digits (like the ones I showed in chapter 1), but the
specific learning methods he used did not seem to extend to
more complex visual tasks. Nonetheless, the neocognitron was
an important inspiration for later approaches to deep neural
networks, including today’s most influential and widely used
approach: convolutional neural networks, or (as most people in
the field call them) ConvNets.

ConvNets are the driving force behind today’s deep-learning
revolution in computer vision, and in other areas as well.
Although they have been widely heralded as the next big thing in
AI, ConvNets are actually not very new: they were first proposed
in the 1980s by the French computer scientist Yann LeCun, who
had been inspired by Fukushima’s neocognitron.

FIGURE 8: Pathway of visual input from eyes to visual cortex

I’ll spend some time here describing how ConvNets work,
because understanding them is crucial for making sense of
where computer vision—as well as much else about AI—is today
and what its limits are.



Object Recognition in the Brain and in
ConvNets

Like the neocognitron, the design of ConvNets is based on
several key insights about the brain’s visual system that were
discovered by Hubel and Wiesel in the 1950s and ’60s. When
your eyes focus on a scene, what they receive is light of different
wavelengths that has been reflected by the objects and surfaces
in the scene. Light falling on the eyes activates cells in each
retina—essentially a grid of neurons in the back of the eye.
These neurons communicate their activation through the optic
nerves and into the brain, eventually activating neurons in the
visual cortex, which resides in the back of the head (figure 8).
The visual cortex is roughly organized as a hierarchical series of
layers of neurons, like the stacked layers of a wedding cake,
where the neurons in each layer communicate their activations
to neurons in the succeeding layer.

FIGURE 9: Sketch of visual features detected by neurons in different layers of the
visual cortex

Hubel and Wiesel found evidence that neurons in different
layers of this hierarchy act as “detectors” that respond to
increasingly complex features appearing in the visual scene, as
illustrated in figure 9: neurons at initial layers become active
(that is, fire at a higher rate) in response to edges; their
activation feeds into layers of neurons that respond to simple
shapes made up of these edges; and so on, up through more
complex shapes and finally entire objects and specific faces.
Note that the arrows in figure 9 indicate a bottom-up (or feed-



forward) flow of information, representing connections from
lower to higher layers (in the figure, left to right). It’s important
to note that a top-down (or feed-backward) flow of information
(from higher to lower layers) also occurs in the visual cortex; in
fact, there are about ten times as many feed-backward
connections as feed-forward ones. However, the role of these
backward connections is not well understood by neuroscientists,
although it is well established that our prior knowledge and
expectations, presumably stored in higher brain layers, strongly
influence what we perceive.

Like the feed-forward hierarchical structure illustrated in
figure 9, a ConvNet consists of a sequence of layers of simulated
neurons. I’ll again refer to these simulated neurons as units.
Units in each layer provide input to units in the next layer. Just
like the neural network I described in chapter 2, when a ConvNet
processes an image, each unit takes on a particular activation
value—a real number that is computed from the unit’s inputs
and their weights.

Let’s make this discussion more specific by imagining a
hypothetical ConvNet, with four layers plus a “classification
module,” that we want to train to recognize dogs and cats in
images. Assume for simplicity that each input image depicts
exactly one dog or cat. Figure 10 illustrates our ConvNet’s
structure. It’s a bit complicated, so I’ll go through it carefully
step-by-step to explain how it works.

FIGURE 10: Illustration of a four-layer convolutional neural network (ConvNet)
designed to recognize dogs and cats in photos



Input and Output
The input to our ConvNet is an image—that is, an array of

numbers, corresponding to the brightness and color of the
image’s pixels.4 Our ConvNet’s final output is the network’s
confidence (0 percent to 100 percent) for each category: “dog”
and “cat.” Our goal is to have the network learn to output a high
confidence for the correct category and a low confidence for the
other category. In doing so, the network will learn what set of
features of the input image are most useful for this task.

Activation Maps
Notice in figure 10 that each layer of the network is

represented by a set of three overlapping rectangles. These
rectangles represent activation maps, inspired by similar “maps”
found in the brain’s visual system. Hubel and Wiesel discovered
that neurons in the lower layers of the visual cortex are
physically arranged so that they form a rough grid, with each
neuron in the grid responding to a corresponding small area of
the visual field. Imagine flying at night in an airplane over Los
Angeles and taking a photo; the lights seen in your photo form a
rough map of the features of the lit-up city. Analogously, the
activations of the neurons in each grid-like layer of the visual
cortex form a rough map of the important features in the visual
scene. Now imagine that you had a very special camera that
could produce separate photos for house lights, building lights,
and car lights. This is something like what the visual cortex does:
each important visual feature has its own separate neural map.
The combination of these maps is a key part of what gives rise to
our perception of a scene.



FIGURE 11: Activation maps in the first layer of our ConvNet

Like neurons in the visual cortex, the units in a ConvNet act
as detectors for important visual features, each unit looking for
its designated feature in a specific part of the visual field. And
(very roughly) like the visual cortex, each layer in a ConvNet
consists of several grids of these units, with each grid forming an
activation map for a specific visual feature.

What visual features should ConvNet units detect? Let’s look
to the brain first. Hubel and Wiesel found that neurons in lower
layers of the visual cortex act as edge detectors, where an edge
refers to a boundary between two contrasting image regions.
Each neuron receives input corresponding to a specific small
region of the visual scene; this region is called the neuron’s
receptive field. The neuron becomes active (that is, starts firing
more rapidly) only if its receptive field contains a particular kind
of edge.

In fact, these neurons are quite specific about what kind of
edge they respond to. Some neurons become active only when
there is a vertical edge in their receptive field; some respond
only to a horizontal edge; others fire only for edges at other
specific angles. One of Hubel and Wiesel’s most important
findings was that each small region of your visual field
corresponds to the receptive fields of many different such “edge
detector” neurons. That is, at a low level of visual processing,
your neurons are figuring out what edge orientations occur in
every part of the scene you are looking at. Edge-detecting



neurons feed into higher layers of the visual cortex, the neurons
of which seem to be detectors for specific shapes, objects, and
faces.5

Similarly, the first layer of our hypothetical ConvNet consists
of edge-detecting units. Figure 11 gives a closer view of layer 1
of our ConvNet. This layer consists of three activation maps,
each of which is a grid of units. Each unit in a map corresponds
to the analogous location in the input image, and each unit gets
its input from a small region around that location—its receptive
field. (The receptive fields of neighboring units typically overlap.)
Each unit in each map calculates an activation value that
measures the degree to which the region “matches” the unit’s
preferred edge orientation—for example, vertical, horizontal, or
slanted at various degrees.

FIGURE 12: Illustration of how convolutions are used to detect vertical edges. For
example, a convolution of the upper receptive field with the weights is (200 ×
1) + (110 × 0) + (70 × −1) + (190 × 1) + (90 × 0) + (80 × −1) + (220 × 1) + (70 × 0) +

(50 × −1) = 410.

Figure 12 illustrates in detail how the units in map 1—those
that detect vertical edges—calculate their activations. The small
white squares in the input image represent the receptive fields



of two different units. The image patches inside these receptive
fields, when enlarged, are shown as arrays of pixel values. Here,
for simplicity, I’ve displayed each patch as a three-by-three set of
pixels (the values, by convention, range from 0 to 255—the
lighter the pixel, the higher the value). Each unit receives as
input the pixel values in its receptive field. The unit then
multiplies each input by its weight and sums the results to
produce the unit’s activation.

The weights shown in figure 12 are designed to produce a
high positive activation when there is a light-to-dark vertical
edge in the receptive field (that is, high contrast between the left
and the right sides of the input patch). The upper receptive field
contains a vertical edge: the dog’s light fur next to the darker
grass. This is reflected in the high activation value (410). The
lower receptive field does not contain such an edge, only dark
grass, and the activation (−10) is closer to 0. Note that a dark-to-
light vertical edge will yield a “high” negative value (that is, a
negative value far from 0).

This calculation—multiplying each value in a receptive field
by its corresponding weight and summing the results—is called
a convolution. Hence the name “convolutional neural network.” I
mentioned above that in a ConvNet, an activation map is a grid
of units corresponding to receptive fields all over the image.
Each unit in a given activation map uses the same weights to
compute a convolution with its receptive field; imagine the input
image with the white square sliding along every patch of the
image.6 The result is the activation map in figure 12: the center
pixel of a unit’s receptive field is colored white for high positive
and negative activations and darker for activations close to 0.
You can see that the white areas highlight the locations where
vertical edges exist. Maps 2 and 3 in figure 11 were created in
the same way, but with weights that highlight horizontal and
slanted edges, respectively. Taken together, the maps of edge-
detecting units in layer 1 provide the ConvNet with a



representation of the input image in terms of oriented edges in
different regions, something like what an edge-detection
program would produce.

Let’s take a moment to talk about the word map here. In
everyday use, map refers to a spatial representation of a
geographic area, such as a city. A road map of Paris, say, shows a
particular feature of the city—its layout of streets, avenues, and
alleys—but doesn’t include the city’s many other features, such
as buildings, houses, lampposts, trash cans, apple trees, and
fishponds. Other kinds of maps focus on other features; you can
find maps that highlight Paris’s bike lanes, its vegetarian
restaurants, its dog-friendly parks. Whatever your interests,
there is quite possibly a map that shows where to find them. If
you wanted to explain Paris to a friend who had never been
there, a creative approach might be to show your friend a
collection of such “special interest” maps of the city.

A ConvNet (like the brain) represents the visual scene as a
collection of maps, reflecting the specific “interests” of a set of
detectors. In my example in figure 11, these interests are
different edge orientations. However, as we’ll see below, in
ConvNets the network itself learns what its interests (that is,
detectors) should be; these depend on the specific task it is
trained for.

Making maps isn’t limited to layer 1 of our ConvNet. As you
can see in figure 10, a similar structure applies at all of the
layers: each layer has a set of detectors, each of which creates its
own activation map. A key to the ConvNet’s success is that—
again, inspired by the brain—these maps are hierarchical: the
inputs to the units at layer 2 are the activation maps of layer 1,
the inputs to the units at layer 3 are the activation maps of layer
2, and so on up the layers. In our hypothetical network, in which
layer 1 units respond to edges, the layer 2 units would be
sensitive to specific combinations of edges, such as corners and
T shapes. Layer 3 detectors would be sensitive to combinations



of combinations of edges. As you go up the hierarchy, the
detectors become sensitive to increasingly more complex
features, just as Hubel, Wiesel, and others saw in the brain.

Our hypothetical ConvNet has four layers, each with three
maps, but in the real world these networks can have many more
layers—sometimes hundreds—each with different numbers of
activation maps. Determining these and many other aspects of a
ConvNet’s structure is part of the art of getting these complex
networks to work for a given task. In chapter 3, I described I. J.
Good’s vision of a future “intelligence explosion” in which
machines themselves create increasingly intelligent machines.
We’re not there yet. For the time being, getting ConvNets to
work well requires a lot of human ingenuity.

Classification in ConvNets
Layers 1 to 4 of our network are called convolutional layers
because each performs convolutions on the preceding layer (and
layer 1 performs convolutions on the input). Given an input
image, each layer successively performs its calculations, and
finally at layer 4 the network has produced a set of activation
maps for relatively complex features. These might include eyes,
leg shapes, tail shapes, or anything else that the network has
learned is useful for classifying the objects it is trained on (here
dogs and cats). At this point, it’s time for the classification
module to use these features to predict what object the image
depicts.

The classification module is actually an entire traditional
neural network, similar to the kind I described in chapter 2.7 The
inputs to the classification module are the activation maps from
the highest convolutional layer. The module’s output is a set of
percentage values, one for each possible category, rating the



network’s confidence that the input depicts an image of that
category (here dog or cat).

Let me summarize this brief explanation of ConvNets:
Inspired by Hubel and Wiesel’s findings on the brain’s visual
cortex, a ConvNet takes an input image and transforms it—via
convolutions—into a set of activation maps with increasingly
complex features. The features at the highest convolutional layer
are fed into a traditional neural network (which I’ve called the
classification module), which outputs confidence percentages for
the network’s known object categories. The object category with
the highest confidence is returned as the network’s classification
of the image.8

Would you like to experiment with a well-trained ConvNet?
Simply take a photo of an object, and upload it to Google’s
“search by image” engine.9 Google will run a ConvNet on your
image and, based on the resulting confidences (over thousands
of possible object categories), will tell you its “best guess” for the
image.

Training a ConvNet
Our hypothetical ConvNet consists of edge detectors at its first
layer, but in real-world ConvNets edge detectors aren’t built in.
Instead, ConvNets learn from training examples what features
should be detected at each layer, as well as how to set the
weights in the classification module so as to produce a high
confidence for the correct answer. And, just as in traditional
neural networks, all the weights can be learned from data via the
same back-propagation algorithm that I described in chapter 2.

More specifically, here is how you could train our ConvNet to
identify a given image as a dog or cat. First, collect many
example images of dogs and cats—this is your “training set.”
Also, create a file that gives a label for each image—that is, “dog”



or “cat.” (Or better, take a hint from computer-vision researchers:
Hire a graduate student to do all this for you. If you are a
graduate student, then recruit an undergrad. No one enjoys this
labeling chore!) Your training program initially sets all the
weights in the network to random values. Then your program
commences training: one by one, each image is given as the
input to the network; the network performs its layer-by-layer
calculations and finally outputs confidence percentages for “dog”
and “cat.” For each image, your training program compares
these output values to the “correct” values; for example, if the
image is a dog, then “dog” confidence should be 100 percent and
“cat” confidence should be 0 percent. Then the training program
uses the back-propagation algorithm to change the weights
throughout the network just a bit, so that the next time this
image is seen, the confidences will be closer to the correct
values.

Following this procedure—input the image, then calculate
the error at the output, then change the weights—for every
image in your training set is called one “epoch” of training.
Training a ConvNet requires many epochs, during which the
network processes each image over and over again. Initially, the
network will be very bad at recognizing dogs and cats, but
slowly, as it changes its weights over many epochs, it will get
increasingly better at the task. Finally, at some point, the
network “converges”; that is, the weights stop changing much
from one epoch to the next, and the network is (in principle!)
very good at recognizing dogs and cats in the images in the
training set. But we won’t know if the network is actually good at
this task in general until we see if it can apply what it has learned
to identify images from outside its training set. What’s really
interesting is that, even though ConvNets are not constrained by
a programmer to learn to detect any particular feature, when
trained on large sets of real-world photographs, they indeed



seem to learn a hierarchy of detectors similar to what Hubel and
Wiesel found in the brain’s visual system.

In the next chapter, I’ll recount the extraordinary ascent of
ConvNets from relative obscurity to near-complete dominance in
machine vision, a transformation made possible by a concurrent
technological revolution: that of “big data.”
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ConvNets and ImageNet

Yann LeCun, the inventor of ConvNets, has worked on neural
networks all of his professional life, starting in the 1980s and
continuing through the winters and springs of the field. As a
graduate student and postdoctoral fellow, he was fascinated by
Rosenblatt’s perceptrons and Fukushima’s neocognitron, but
noted that the latter lacked a good supervised-learning
algorithm. Along with other researchers (most notably, his
postdoctoral advisor Geoffrey Hinton), LeCun helped develop
such a learning method—essentially the same form of back-
propagation used on ConvNets today.1

In the 1980s and ’90s, while working at Bell Labs, LeCun
turned to the problem of recognizing handwritten digits and
letters. He combined ideas from the neocognitron with the back-
propagation algorithm to create the semi-eponymous “LeNet”—
one of the earliest ConvNets. LeNet’s handwritten-digit-
recognition abilities made it a commercial success: in the 1990s
and into the 2000s it was used by the U.S. Postal Service for
automated zip code recognition, as well as in the banking
industry for automated reading of digits on checks.

LeNet and its successor ConvNets did not do well in scaling
up to more complex vision tasks. By the mid-1990s, neural
networks started falling out of favor in the AI community, and
other methods came to dominate the field. But LeCun, still a



believer, kept working on ConvNets, gradually improving them.
As Geoffrey Hinton later said of LeCun, “He kind of carried the
torch through the dark ages.”2

LeCun, Hinton, and other neural network loyalists believed
that improved, larger versions of ConvNets and other deep
networks would conquer computer vision if only they could be
trained with enough data. Stubbornly, they kept working on the
sidelines throughout the 2000s. In 2012, the torch carried by
ConvNet researchers suddenly lit the vision world afire, by
winning a computer-vision competition on an image data set
called ImageNet.

Building ImageNet
AI researchers are a competitive bunch, so it’s no surprise that
they like to organize competitions to drive the field forward. In
the field of visual object recognition, researchers have long held
annual contests to determine whose program performs the best.
Each of these contests features a “benchmark data set”: a
collection of photos, along with human-created labels that name
objects in the photos.

From 2005 to 2010, the most prominent of these annual
contests was the PASCAL Visual Object Classes competition,
which by 2010 featured about fifteen thousand photographs
(downloaded from the photo-sharing site Flickr), with human-
created labels for twenty object categories, such as “person,”
“dog,” “horse,” “sheep,” “car,” “bicycle,” “sofa,” and “potted plant.”

The entries to the “classification” part of this contest3 were
computer-vision programs that could take a photograph as input
(without seeing its human-created label) and could then output,
for each of the twenty categories, whether an object of that
category was present in the image.



Here’s how the competition worked. The organizers would
split the photographs into a training set that contestants could
use to train their programs and a test set, not released to
contestants, that would be used to gauge the programs’
performance on images outside the training set. Prior to the
competition, the training set would be offered online, and when
the contest was held, researchers would submit their trained
programs to be tested on the secret test set. The winning entry
was the one that had the highest accuracy recognizing objects in
the test-set images.

The annual PASCAL competitions were a very big deal and
did a lot to spur research in object recognition. Over the years of
the challenge, the competing programs gradually got better
(curiously, potted plants remained the hardest objects to
recognize). However, some researchers were frustrated by the
shortcomings of the PASCAL benchmark as a way to move
computer vision forward. Contestants were focusing too much
on PASCAL’s specific twenty object categories and were not
building systems that could scale up to the huge number of
object categories recognized by humans. Furthermore, there just
weren’t enough photos in the data set for the competing
systems to learn all the many possible variations in what the
objects look like so as to be able to generalize well.

To move ahead, the field needed a new benchmark image
collection, one featuring a much larger set of categories and
vastly more photos. Fei-Fei Li, a young computer-vision professor
at Princeton, was particularly focused on this goal. By
serendipity, she learned of a project led by a fellow Princeton
professor, the psychologist George Miller, to create a database of
English words, arranged in a hierarchy moving from most
specific to most general, with groupings among synonyms. For
example, consider the word cappuccino. The database, called
WordNet, contains the following information about this term
(where an arrow means “is a kind of”):



cappuccino ⇒ coffee ⇒ beverage ⇒ food ⇒ substance ⇒ physical entity
⇒ entity

The database also contains information that, say, beverage, drink,
and potable are synonyms, that beverage is part of another chain
including liquid, and so forth.

WordNet had been (and continues to be) used extensively in
research by psychologists and linguists as well as in AI natural-
language processing systems, but Fei-Fei Li had a new idea:
create an image database that is structured according to the
nouns in WordNet, where each noun is linked to a large number
of images containing examples of that noun. Thus the idea for
ImageNet was born.

Li and her collaborators soon commenced collecting a
deluge of images by using WordNet nouns as queries on image
search engines such as Flickr and Google image search.
However, if you’ve ever used an image search engine, you know
that the results of a query are often far from perfect. For
example, if you type “macintosh apple” into Google image
search, you get photos not only of apples and Mac computers
but also of apple-shaped candles, smartphones, bottles of apple
wine, and any number of other nonrelevant items. Thus, Li and
her colleagues had to have humans figure out which images
were not actually illustrations of a given noun and get rid of
them. At first, the humans who did this were mainly
undergraduates. The work was agonizingly slow and taxing. Li
soon figured out that at the rate they were going, it would take
ninety years to complete the task.4

Li and her collaborators brainstormed about possible ways
to automate this work, but of course the problem of deciding if a
photo is an instance of a particular noun is the task of object
recognition itself! And computers were nowhere near to being
reliable at this task, which was the whole reason for constructing
ImageNet in the first place.



The group was at an impasse, until Li, by chance, stumbled
upon a three-year-old website that could deliver the human
smarts that ImageNet required. The website had the strange
name Amazon Mechanical Turk.

Mechanical Turk
According to Amazon, its Mechanical Turk service is “a
marketplace for work that requires human intelligence.” The
service connects requesters, people who need a task
accomplished that is hard for computers, with workers, people
who are willing to lend their human intelligence to a requester’s
task, for a small fee (for example, labeling the objects in a photo,
for ten cents per photo). Hundreds of thousands of workers have
signed up, from all over the world. Mechanical Turk is the
embodiment of Marvin Minsky’s “Easy things are hard” dictum:
the human workers are hired to perform the “easy” tasks that
are currently too hard for computers.

The name Mechanical Turk comes from a famous
eighteenth-century AI hoax: the original Mechanical Turk was a
chess-playing “intelligent machine,” which secretly hid a human
who controlled a puppet (the “Turk,” dressed like an Ottoman
sultan) that made the moves. Evidently, it fooled many
prominent people of the time, including Napoleon Bonaparte.
Amazon’s service, while not meant to fool anyone, is, like the
original Mechanical Turk, “Artificial Artificial Intelligence.”5

Fei-Fei Li realized that if her group paid tens of thousands of
workers on Mechanical Turk to sort out irrelevant images for
each of the WordNet terms, the whole data set could be
completed within a few years at a relatively low cost. In a mere
two years, more than three million images were labeled with
corresponding WordNet nouns to form the ImageNet data set.
For the ImageNet project, Mechanical Turk was “a godsend.”6



The service continues to be widely used by AI researchers for
creating data sets; nowadays, academic grant proposals in AI
commonly include a line item for “Mechanical Turk workers.”

The ImageNet Competitions
In 2010, the ImageNet project launched the first ImageNet Large
Scale Visual Recognition Challenge, in order to spur progress
toward more general object-recognition algorithms. Thirty-five
programs competed, representing computer-vision researchers
from academia and industry around the world. The competitors
were given labeled training images—1.2 million of them—and a
list of possible categories. The task for the trained programs was
to output the correct category of each input image. The
ImageNet competition had a thousand possible categories,
compared with PASCAL’s twenty.

The thousand possible categories were a subset of WordNet
terms chosen by the organizers. The categories are a random-
looking assembly of nouns, ranging from the familiar and
commonplace (“lemon,” “castle,” “grand piano”) to the somewhat
less common (“viaduct,” “hermit crab,” “metronome”), and on to
the downright obscure (“Scottish deerhound,” “ruddy turnstone,”
“hussar monkey”). In fact, obscure animals and plants—at least
ones I wouldn’t be able to distinguish—constitute at least a tenth
of the thousand target categories.

Some of the photographs contain only one object; others
contain many objects, including the “correct” one. Because of
this ambiguity, a program gets to guess five categories for each
image, and if the correct one is in this list, the program is said to
be correct on this image. This is called the “top-5” accuracy
metric.

The highest-scoring program in 2010 used a so-called
support vector machine, the predominant object-recognition



algorithm of the day, which employed sophisticated
mathematics to learn how to assign a category to each input
image. Using the top-5 accuracy metric, this winning program
was correct on 72 percent of the 150,000 test images. Not a bad
showing, though this means that the program was wrong, even
with five guesses allowed, on more than 40,000 of the test
images, leaving a lot of room for improvement. Notably, there
were no neural networks among the top-scoring programs.

The following year, the highest-scoring program—also using
support vector machines—showed a respectable but modest
improvement, getting 74 percent of the test images correct.
Most people in the field expected this trend to continue;
computer-vision research would chip away at the problem, with
gradual improvement at each annual competition.

However, these expectations were upended in the 2012
ImageNet competition: the winning entry achieved an amazing
85 percent correct. Such a jump in accuracy was a shocking
development. What’s more, the winning entry did not use
support vector machines or any of the other dominant
computer-vision methods of the day. Instead, it was a
convolutional neural network. This particular ConvNet has come
to be known as AlexNet, named after its main creator, Alex
Krizhevsky, then a graduate student at the University of Toronto,
supervised by the eminent neural network researcher Geoffrey
Hinton. Krizhevsky, working with Hinton and a fellow student,
Ilya Sutskever, created a scaled-up version of Yann LeCun’s LeNet
from the 1990s; training such a large network was now made
possible by increases in computer power. AlexNet had eight
layers, with about sixty million weights whose values were
learned via back-propagation from the million-plus training
images.7 The Toronto group came up with some clever methods
for making the network training work better, and it took a cluster
of powerful computers about a week to train AlexNet.



AlexNet’s success sent a jolt through the computer-vision
and broader AI communities, suddenly waking people up to the
potential power of ConvNets, which most AI researchers hadn’t
considered a serious contender in modern computer vision. In a
2015 article, the journalist Tom Simonite interviewed Yann LeCun
about the unexpected triumph of ConvNets:

LeCun recalls seeing the community that had mostly ignored neural
networks pack into the room where the winners presented a paper on
their results. “You could see right there a lot of senior people in the
community just flipped,” he says. “They said, ‘Okay, now we buy it.
That’s it, now—you won.’”8

At almost the same time, Geoffrey Hinton’s group was also
demonstrating that deep neural networks, trained on huge
amounts of labeled data, were significantly better than the
current state of the art in speech recognition. The Toronto
group’s ImageNet and speech-recognition results had
substantial ripple effects. Within a year, a small company started
by Hinton was acquired by Google, and Hinton and his students
Krizhevsky and Sutskever became Google employees. This acqui-
hire instantly put Google at the forefront of deep learning.

Soon after, Yann LeCun was lured away from his full-time
New York University professorship by Facebook to head up its
newly formed AI lab. It didn’t take long before all the big tech
companies (as well as many smaller ones) were snapping up
deep-learning experts and their graduate students as fast as
possible. Seemingly overnight, deep learning became the hottest
part of AI, and expertise in deep learning guaranteed computer
scientists a large salary in Silicon Valley or, better yet, venture
capital funding for their proliferating deep-learning start-up
companies.

The annual ImageNet competition began to see wider
coverage in the media, and it quickly morphed from a friendly
academic contest into a high-profile sparring match for tech



companies commercializing computer vision. Winning at
ImageNet would guarantee coveted respect from the vision
community, along with free publicity, which might translate into
product sales and higher stock prices. The pressure to produce
programs that outperformed competitors was notably manifest
in a 2015 cheating incident involving the giant Chinese internet
company Baidu. The cheating involved a subtle example of what
people in machine learning call data snooping.

Here’s what happened: Before the competition, each team
competing on ImageNet was given training images labeled with
correct object categories. They were also given a large test set—
a collection of images not in the training set—without any labels.
Once a program was trained, a team could see how well their
method performed on this test set. This helps test how well a
program has learned to generalize (as opposed to, say,
memorizing the training images and their labels). Only the
performance on the test set counts. The way a team could find
out how well their program did on the test set was to run their
program on each test-set image, collect the top five guesses for
each image, and submit this list to a “test server”—a computer
run by the contest organizers. The test server would compare
the submitted list with the (secret) correct answers and spit out
the percentage correct.

Each team could sign up for an account on the test server
and use it to see how well various versions of their programs
were scoring; this would allow them to publish (and publicize)
their results before the official results were announced.

A cardinal rule in machine learning is “Don’t train on the test
data.” It seems obvious: If you include test data in any part of
training your program, you won’t get a good measure of the
program’s generalization abilities. It would be like giving
students the questions on the final exam before they take the
test. But it turns out that there are subtle ways that this rule can



be unintentionally (or intentionally) broken to make your
program’s performance look better than it actually is.

One such method would be to submit your program’s test-
set answers to the test server and, based on the result, tweak
your program. Then submit again. Repeat this many times, until
you have tweaked it to do better on the test set. This doesn’t
require seeing the actual labels in the test set, but it does require
getting feedback on accuracy and adjusting your program
accordingly. It turns out that if you can do this enough times, it
can be very effective in improving your program’s performance
on the test set. But because you’re using information from the
test set to change your program, you’ve now destroyed the
ability to use the test set to see if your program generalizes well.
It would be like allowing students to take a final exam many
times, each time getting back a single grade, but using that
single grade to try to improve their performance the next time
around. Then, at the end, the students submit the version of
their answers that got them the best score. This is no longer a
good measure of how well the students have learned the
subject, just a measure of how they adapted their answers to
particular test questions.

To prevent this kind of data snooping while still allowing the
ImageNet competitors to see how well their programs are doing,
the organizers set a rule saying that each team could submit
answers to the test server at most twice per week. This would
limit the amount of feedback the teams could glean from the
test runs.

The great ImageNet battle of 2015 was fought over a fraction
of a percentage point—seemingly trivial but potentially very
lucrative. Early in the year, a team from Baidu announced a
method that achieved the highest (top-5) accuracy yet on an
ImageNet test set: 94.67 percent, to be exact. But on the very
same day, a team from Microsoft announced a better accuracy
with their method: 95.06 percent. A few days later, a rival team



from Google announced a slightly different method that did
even better: 95.18 percent. This record held for a few months,
until Baidu made a new announcement: it had improved its
method and now could boast a new record, 95.42 percent. This
result was widely publicized by Baidu’s public relations team.

But within a few weeks, a terse announcement came from
the ImageNet organizers: “During the period of November 28th,
2014 to May 13th, 2015, there were at least 30 accounts used by
a team from Baidu to submit to the test server at least 200 times,
far exceeding the specified limit of two submissions per week.”9

In short, the Baidu team had been caught data snooping.
The two hundred points of feedback potentially allowed the

Baidu team to determine which tweaks to their program would
make it perform best on this test set, gaining it the all-important
fraction of a percentage point that made the win. As
punishment, Baidu was disqualified from entering its program in
the 2015 competition.

Baidu, hoping to minimize bad publicity, promptly
apologized and then laid the blame on a rogue employee: “We
found that a team leader had directed junior engineers to
submit more than two submissions per week, a breach of the
current ImageNet rules.”10 The employee, though disputing that
he had broken any rules, was promptly fired from the company.

While this story is merely an interesting footnote to the
larger history of deep learning in computer vision, I tell it to
illustrate the extent to which the ImageNet competition came to
be seen as the key symbol of progress in computer vision, and AI
in general.

Cheating aside, progress on ImageNet continued. The final
competition was held in 2017, with a winning top-5 accuracy of
98 percent. As one journalist commented, “Today, many consider
ImageNet solved,”11 at least for the classification task. The
community is moving on to new benchmark data sets and new
problems, especially ones that integrate vision and language.



What was it that enabled ConvNets, which seemed to be at a
dead end in the 1990s, to suddenly dominate the ImageNet
competition, and subsequently most of computer vision in the
last half a decade? It turns out that the recent success of deep
learning is due less to new breakthroughs in AI than to the
availability of huge amounts of data (thank you, internet!) and
very fast parallel computer hardware. These factors, along with
improvements in training methods, allow hundred-plus-layer
networks to be trained on millions of images in just a few days.

Yann LeCun himself was taken by surprise at how fast things
turned around for his ConvNets: “It’s rarely the case where a
technology that has been around for 20, 25 years—basically
unchanged—turns out to be the best. The speed at which people
have embraced it is nothing short of amazing. I’ve never seen
anything like this before.”12

The ConvNet Gold Rush
Once ImageNet and other large data sets gave ConvNets the
vast amount of training examples they needed to work well,
companies were suddenly able to apply computer vision in ways
never seen before. As Google’s Blaise Agüera y Arcas remarked,
“It’s been a sort of gold rush—attacking one problem after
another with the same set of techniques.”13 Using ConvNets
trained with deep learning, image search engines offered by
Google, Microsoft, and others were able to vastly improve their
“find similar images” feature. Google offered a photo-storage
system that would tag your photos by describing the objects
they contained, and Google’s Street View service could recognize
and blur out street addresses and license plates in its images. A
proliferation of mobile apps enabled smartphones to perform
object and face recognition in real time.



Facebook labeled your uploaded photos with names of your
friends and registered a patent on classifying the emotions
behind facial expressions in uploaded photos; Twitter developed
a filter that could screen tweets for pornographic images; and
several photo- and video-sharing sites started applying tools to
detect imagery associated with terrorist groups. ConvNets can
be applied to video and used in self-driving cars to track
pedestrians, or to read lips and classify body language.
ConvNets can even diagnose breast and skin cancer from
medical images, determine the stage of diabetic retinopathy,
and assist physicians in treatment planning for prostate cancer.

These are just a few examples of the many existing (or soon-
to-exist) commercial applications powered by ConvNets. In fact,
there’s a good chance that any modern computer-vision
application you use employs ConvNets. Moreover, there’s an
excellent chance it was “pretrained” on images from ImageNet to
learn generic visual features before being “fine-tuned” for more
specific tasks.

Given that the extensive training required by ConvNets is
feasible only with specialized computer hardware—typically,
powerful graphical processing units (GPUs)—it is not surprising
that the stock price of the NVIDIA Corporation, the most
prominent maker of GPUs, increased by over 1,000 percent
between 2012 and 2017.

Have ConvNets Surpassed Humans at
Object Recognition?

As I learned more about the remarkable success of ConvNets, I
wondered how close they were to rivaling our own human
object-recognition abilities. A 2015 paper from Baidu (post–
cheating scandal) carried the subtitle “Surpassing Human-Level
Performance on ImageNet Classification.”14 At about the same



time, Microsoft announced in a research blog “a major advance
in technology designed to identify the objects in a photograph or
video, showcasing a system whose accuracy meets and
sometimes exceeds human-level performance.”15 While both
companies made it clear they were talking about accuracy
specifically on ImageNet, the media were not so careful, giving
way to sensational headlines such as “Computers Now Better
than Humans at Recognising and Sorting Images” and “Microsoft
Has Developed a Computer System That Can Identify Objects
Better than Humans.”16

Let’s look a bit harder at the specific contention that
machines are now “better than humans” at object recognition on
ImageNet. This assertion is based on a claim that humans have
an error rate of about 5 percent, whereas the error rate of
machines is (at the time of this writing) close to 2 percent.
Doesn’t this confirm that machines are better than humans at
this task? As is often the case for highly publicized claims about
AI, the claim comes with a few caveats.

Here’s one caveat. When you read about a machine
“identifying objects correctly,” you’d think that, say, given an
image of a basketball, the machine would output “basketball.”
But of course, on ImageNet, correct identification means only
that the correct category is in the machine’s top-five categories.
If, given an image of a basketball, the machine outputs “croquet
ball,” “bikini,” “warthog,” “basketball,” and “moving van,” in that
order, it is considered correct. I don’t know how often this kind of
thing happens, but it’s notable that the best top-1 accuracy—the
fraction of test images on which the correct category is at the
top of the list—was about 82 percent, compared with 98 percent
top-5 accuracy, in the 2017 ImageNet competition. No one, as far
as I know, has reported a comparison between machines and
humans on top-1 accuracy.

Here’s another caveat. Consider the claim, “Humans have an
error rate of about 5% on ImageNet.” It turns out that saying



“humans” is not quite accurate; this result is from an experiment
involving a single human, one Andrej Karpathy, who was at the
time a graduate student at Stanford, researching deep learning.
Karpathy wanted to see if he could train himself to compete
against the best ConvNets on ImageNet. Considering that
ConvNets train on 1.2 million images and then are run on
150,000 test images, this is a daunting task for a human.
Karpathy, who has a popular blog about AI, wrote about his
experience:

I ended up training [myself] on 500 images and then switched to [a
reduced] test set of 1,500 images. The labeling [that is, Karpathy’s
guessing five categories per image] happened at a rate of about 1 per
minute, but this decreased over time. I only enjoyed the first ~200,
and the rest I only did #forscience.… Some images are easily
recognized, while some images (such as those of fine-grained breeds
of dogs, birds, or monkeys) can require multiple minutes of
concentrated effort. I became very good at identifying breeds of
dogs.17

Karpathy found that he was wrong on about 75 of his 1,500
test images, and he went on to analyze the errors he made,
finding that they were largely due to images with multiple
objects, images with specific breeds of dogs, species of birds or
plants, and so on, and object categories that he didn’t realize
were included in the target categories. The kinds of errors made
by ConvNets are different: while they also get confused by
images containing multiple objects, unlike humans they tend to
miss objects that are small in the image, objects that have been
distorted by color or contrast filters the photographer applied to
the image, and “abstract representations” of objects, such as a
painting or statue of a dog, or a stuffed toy dog. Thus, the claim
that computers have bested humans on ImageNet needs to be
taken with a large grain of salt.

Here’s a caveat that might surprise you. When a human says
that a photo contains, say, a dog, we assume it’s because the



human actually saw a dog in the photo. But if a ConvNet
correctly says “dog,” how do we know it actually is basing this
classification on the dog in the image? Maybe there’s something
else in the image—a tennis ball, a Frisbee, a chewed-up shoe—
that was often associated with dogs in the training images, and
the ConvNet is recognizing these and assuming there is a dog in
the photo. These kinds of correlations have often ended up
fooling machines.

One thing we could do is ask the machine to not only output
an object category for an image but also learn to draw a box
around the target object, so we know the machine has actually
“seen” the object. This is precisely what the ImageNet
competition started doing in its second year with its “localization
challenge.” The localization task provided training images with
such boxes drawn (by Mechanical Turk workers) around the
target object(s) in each image; on the test images, the task for
competing programs was to predict five object categories each
with the coordinates of a corresponding box. What may be
surprising is that while deep convolutional neural networks have
performed very well at localization, their performance has
remained significantly worse than their performance on
categorization, although newer competitions are focusing on
precisely this problem.

Probably the most important differences between today’s
ConvNets and humans when it comes to recognizing objects are
in how learning takes place and in how robust and reliable that
learning turns out to be. I’ll explore these differences in the next
chapter.

The caveats I described above aren’t meant to diminish the
amazing recent progress in computer vision. There is no
question that convolutional neural networks have been
stunningly successful in this and other areas, and these
successes have not only produced commercial products but also
resulted in a real sense of optimism in the AI community. My



discussion is meant to illustrate how challenging vision turns out
to be and to add some perspective on the progress made so far.
Object recognition is not yet close to being “solved” by artificial
intelligence.

Beyond Object Recognition
I have focused on object recognition in this chapter because this
has been the area in which computer vision has recently seen
the most progress. However, there’s obviously a lot more to
vision than just recognizing objects. If the goal of computer
vision is to “get a machine to describe what it sees,” then
machines will need to recognize not only objects but also their
relationships to one another and how they interact with the
world. If the “objects” in question are living beings, the machines
will need to know something about their actions, goals,
emotions, likely next steps, and all the other aspects that figure
into telling the story of a visual scene. Moreover, if we really
want the machines to describe what they see, they will need to
use language. AI researchers are actively working on getting
machines to do these things, but as usual these “easy” things are
very hard. As the computer-vision expert Ali Farhadi told The New
York Times, “We’re still very, very far from visual intelligence,
understanding scenes and actions the way humans do.”18

Why are we still so far from this goal? It seems that visual
intelligence isn’t easily separable from the rest of intelligence,
especially general knowledge, abstraction, and language—
abilities that, interestingly, involve parts of the brain that have
many feedback connections to the visual cortex. Additionally, it
could be that the knowledge needed for humanlike visual
intelligence—for example, making sense of the “soldier and dog”
photo at the beginning of the previous chapter—can’t be learned



from millions of pictures downloaded from the web, but has to
be experienced in some way in the real world.

In the next chapter, I’ll look more closely at machine learning
in vision, focusing in particular on the differences between the
ways humans and machines learn and trying to tease out just
what the machines we have trained have actually learned.



6

A Closer Look at Machines That
Learn

The deep-learning pioneer Yann LeCun has received many
awards and accolades, but perhaps his ultimate (if geeky) honor
is being the subject of a widely followed and very funny parody
Twitter account sporting the name “Bored Yann LeCun.” With the
description “Musing on the rise of deep learning in Yann’s
downtime,” the anonymously authored account frequently ends
its clever in-joke tweets with the hashtag #FeelTheLearn.1

Indeed, media reports on cutting-edge AI have been “feeling
the learn” by celebrating the power of deep learning—emphasis
on “learning.” We are told, for example, that “we can now build
systems that learn how to perform tasks on their own,”2 that
“deep learning [enables] computers to literally teach
themselves,”3 and that deep-learning systems learn “in a way
similar to the human brain.”4

In this chapter, I’ll look in more detail at how machines—
particularly ConvNets—learn and how their learning processes
contrast with those of humans. Furthermore, I’ll explore how
differences between learning in ConvNets and in humans affect
the robustness and trustworthiness of what is learned.

Learning on One’s Own



The learning-from-data approach of deep neural networks has
generally proved to be more successful than the “good old-
fashioned AI” strategy, in which human programmers construct
explicit rules for intelligent behavior. However, contrary to what
some media have reported, the learning process of ConvNets is
not very humanlike.

As we’ve seen, the most successful ConvNets learn via a
supervised-learning procedure: they gradually change their
weights as they process the examples in the training set again
and again, over many epochs (that is, many passes through the
training set), learning to classify each input as one of a fixed set
of possible output categories. In contrast, even the youngest
children learn an open-ended set of categories and can
recognize instances of most categories after seeing only a few
examples. Moreover, children don’t learn passively: they ask
questions, they demand information on the things they are
curious about, they infer abstractions of and connections
between concepts, and, above all, they actively explore the
world.

It is inaccurate to say that today’s successful ConvNets learn
“on their own.” As we saw in the previous chapter, in order for a
ConvNet to learn to perform a task, a huge amount of human
effort is required to collect, curate, and label the data, as well as
to design the many aspects of the ConvNet’s architecture. While
ConvNets use back-propagation to learn their “parameters” (that
is, weights) from training examples, this learning is enabled by a
collection of what are called “hyperparameters”—an umbrella
term that refers to all the aspects of the network that need to be
set up by humans to allow learning to even begin. Examples of
hyperparameters include the number of layers in the network,
the size of the units’ “receptive fields” at each layer, how large
the change in each weight should be during learning (called the
learning rate), and many other technical details of the training
process. This part of setting up a ConvNet is called tuning the



hyperparameters. There are many values to set as well as
complex design decisions to be made, and these settings and
designs interact with one another in complex ways to affect the
ultimate performance of the network. Moreover, these settings
and designs must typically be decided anew for each task a
network is trained on.

Tuning the hyperparameters might sound like a pretty
mundane activity, but doing it well is absolutely crucial to the
success of ConvNets and other machine-learning systems.
Because of the open-ended nature of designing these networks,
in general it is not possible to automatically set all the
parameters and designs, even with automated search. Often it
takes a kind of cabalistic knowledge that students of machine
learning gain both from their apprenticeships with experts and
from hard-won experience. As Eric Horvitz, director of Microsoft’s
research lab, characterized it, “Right now, what we are doing is
not a science but a kind of alchemy.”5 And the people who can do
this kind of “network whispering” form a small, exclusive club:
according to Demis Hassabis, cofounder of Google DeepMind,
“It’s almost like an art form to get the best out of these
systems.… There’s only a few hundred people in the world that
can do that really well.”6

Actually, the number of deep-learning experts is growing
quickly; many universities now offer courses in the subject, and a
growing list of companies have started their own deep-learning
training programs for employees. Membership in the deep-
learning club can be quite lucrative. At a recent conference I
attended, a leader of Microsoft’s AI product group spoke to the
audience about the company’s efforts to hire young deep-
learning engineers: “If a kid knows how to train five layers of
neural networks, the kid can demand five figures. If the kid
knows how to train fifty layers, the kid can demand seven
figures.”7 Lucky for this soon-to-be-wealthy kid, the networks
can’t yet teach themselves.



Big Data
It’s no secret: deep learning requires big data. Big in the sense of
the million-plus labeled training images in ImageNet. Where
does all this data come from? The answer is, of course, you—and
probably everyone you know. Modern computer-vision
applications are possible only because of the billions of images
that internet users have uploaded and (sometimes) tagged with
text identifying what is in the image. Have you ever put a photo
of a friend on your Facebook page and commented on it?
Facebook thanks you! That image and text might have been
used to train its face-recognition system. Have you ever
uploaded an image to Flickr? If so, it’s possible your image is part
of the ImageNet training set. Have you ever identified a picture
in order to prove to a website that you’re not a robot? Your
identification might have helped Google tag an image for use in
training its image search system.

Big tech companies offer many services for free on your
computer and smartphone: web search, video calling, email,
social networking, automated personal assistants—the list goes
on. What’s in it for these companies? The answer you might have
heard is that their true product is their users (like you and me);
their customers are the advertisers who grab our attention and
information about us while we use these “free” services. But
there’s a second answer: when we use services provided by tech
companies such as Google, Amazon, and Facebook, we are
directly providing these companies with examples—in the form
of our images, videos, text, or speech—that they can utilize to
better train their AI programs. And these improved programs
attract more users (and thus more data), helping advertisers to
target their ads more effectively. Moreover, the training
examples we provide them can be used to train and offer
“enterprise” services, such as computer vision and natural-
language processing, to businesses for a fee.



Much has been written about the ethics of these big
companies using data you have created (such as all the images,
videos, and text that you upload to Facebook) to train programs
and sell products without informing or compensating you. This is
an important discussion but beyond the scope of this book.8 The
point I want to make here is that the reliance on extensive
collections of labeled training data is one more way in which
deep learning differs from human learning.

With the proliferation of deep-learning systems in real-world
applications, companies are finding themselves in need of new
labeled data sets for training deep neural networks. Self-driving
cars are a noteworthy example. These cars need sophisticated
computer vision in order to recognize lanes in the road, traffic
lights, stop signs, and so on, and to distinguish and track
different kinds of potential obstacles, such as other cars,
pedestrians, bicyclists, animals, traffic cones, knocked-over
garbage cans, tumbleweeds, and anything else that you might
not want your car to hit. Self-driving cars need to learn what
these various objects look like—in sun, rain, snow, or fog, day or
night—and which objects are likely to move and which will stay
put. Deep learning has helped make this task possible, at least in
part, but deep learning, as always, requires a profusion of
training examples.

Self-driving car companies collect these training examples
from countless hours of video taken by cameras mounted on
actual cars driving in traffic on highways and city streets. These
cars may be self-driving prototypes being tested by companies
or, in the case of Tesla, cars driven by customers who, upon
purchase of a Tesla vehicle, must agree to a data-sharing policy
with the company.9

Tesla owners aren’t required to label every object on the
videos taken by their cars. But someone has to. In 2017, the
Financial Times reported that “most companies working on this
technology employ hundreds or even thousands of people, often



in offshore outsourcing centres in India or China, whose job it is
to teach the robo-cars to recognize pedestrians, cyclists and
other obstacles. The workers do this by manually marking up or
‘labeling’ thousands of hours of video footage, often frame by
frame.”10 New companies have sprung up to offer labeling data
as a service; Mighty AI, for example, offers “the labeled data you
need to train your computer vision models” and promises
“known, verified, and trusted annotators who specialize in
autonomous driving data.”11

The Long Tail
The supervised-learning approach, using large data sets and
armies of human annotators, works well for at least some of the
visual abilities needed for self-driving cars (many companies are
also exploring the use of video-game-like driving-simulation
programs to augment supervised training). But what about in
the rest of life? Virtually everyone working in the AI field agrees
that supervised learning is not a viable path to general-purpose
AI. As the renowned AI researcher Andrew Ng has warned,
“Requiring so much data is a major limitation of [deep learning]
today.”12 Yoshua Bengio, another high-profile AI researcher,
agrees: “We can’t realistically label everything in the world and
meticulously explain every last detail to the computer.”13



FIGURE 13: Possible situations a self-driving car might encounter, ranked by
likelihood, illustrating the “long tail” of unlikely scenarios

This issue is compounded by the so-called long-tail problem:
the vast range of possible unexpected situations an AI system
could be faced with. Figure 13 illustrates this phenomenon by
giving the likelihood of various hypothetical situations that a
self-driving car might encounter during, say, a day’s worth of
driving. Very common situations, such as encountering a red
traffic light or a stop sign, are rated as having high likelihood;
medium-likelihood situations include broken glass and wind-
whipped plastic bags—not encountered every day (depending
on where you drive), but not uncommon. It is less likely that your
self-driving car would encounter a flooded road or lane



markings obscured by snow, and even less likely that you would
face a snowman in the middle of a high-speed road.

I conjured up these different scenarios and guessed at their
relative likelihood; I’m sure you can come up with many more of
your own. Any individual car is probably safe: after all, taken
together, experimental autonomous cars have driven millions of
miles and have caused a relatively small number of accidents
(albeit a few high-profile fatal ones). But once self-driving cars
are widespread, while each individual unlikely situation is, by
definition, very unlikely, there are so many possible scenarios in
the world of driving and so many cars that some self-driving car
somewhere is likely to encounter one of them at some point.

The term long tail comes from statistics, in which certain
probability distributions are shaped like the one in figure 13: the
long list of very unlikely (but possible) situations is called the
“tail” of the distribution. (The situations in the tail are sometimes
called edge cases.) Most real-world domains for AI exhibit this
kind of long-tail phenomenon: events in the real world are
usually predictable, but there remains a long tail of low-
probability, unexpected occurrences. This is a problem if we rely
solely on supervised learning to provide our AI system with its
knowledge of the world; the situations in the tail don’t show up
in the training data often enough, if at all, so the system is more
likely to make errors when faced with such unexpected cases.

Here are two real-world examples. In March 2016, there was
a massive snowstorm forecast in the Northeast of the United
States, and reports appeared on Twitter that Tesla vehicles’
Autopilot mode, which enables limited autonomous driving, was
getting confused between lane markings and salt lines laid out
on the highway in anticipation of the storm (figure 14). In
February 2016, one of Google’s prototype self-driving cars, while
making a right turn, had to veer to the left to avoid sandbags on
the right side of a California road, and the car’s left front struck a
public bus driving in the left lane. Each vehicle had expected the



other to yield (perhaps the bus driver expected a human driver
who would be more intimidated by the much larger bus).

Companies working on autonomous-vehicle technology are
acutely aware of the long-tail problem: their teams brainstorm
possible long-tail scenarios and actively create extra training
examples as well as specially coded strategies for all the unlikely
scenarios they can come up with. But of course it is impossible to
train or code a system for all the possible situations it might
encounter.

FIGURE 14: Salt lines on a highway, in advance of a forecasted snowstorm, were
reported to be confusing Tesla’s Autopilot feature.

A commonly proposed solution is for AI systems to use
supervised learning on small amounts of labeled data and learn
everything else via unsupervised learning. The term unsupervised
learning refers to a broad group of methods for learning
categories or actions without labeled data. Examples include



methods for clustering examples based on their similarity or
learning a new category via analogy to known categories. As I’ll
describe in a later chapter, perceiving abstract similarity and
analogies is something at which humans excel, but to date there
are no very successful AI methods for this kind of unsupervised
learning. Yann LeCun himself acknowledges that “unsupervised
learning is the dark matter of AI.” In other words, for general AI,
almost all learning will have to be unsupervised, but no one has
yet come up with the kinds of algorithms needed to perform
successful unsupervised learning.

Humans make mistakes all the time, even (or especially) in
driving; any one of us might have hit that public bus, had we
been the one veering around sandbags. But humans also have a
fundamental competence lacking in all current AI systems:
common sense. We have vast background knowledge of the
world, both its physical and its social aspects. We have a good
sense of how objects—both inanimate and living—are likely to
behave, and we use this knowledge extensively in making
decisions about how to act in any given situation. We can infer
the reason behind salt lines on the road even if we have never
driven in snow before. We know how to interact socially with
other humans, so we can use eye contact, hand signals, and
other body language to deal with broken traffic lights during a
power failure. We generally know to yield the road to a large
public bus, even if we technically have the right of way. I’ve used
driving as an example here, but we humans use common sense
—usually subconsciously—in every facet of life. Many people
believe that until AI systems have common sense as humans do,
we won’t be able to trust them to be fully autonomous in
complex real-world situations.

What Did My Network Learn?



A few years ago, Will Landecker, then a graduate student in my
research group, trained a deep neural network to classify
photographs into one of two categories: “contains an animal”
and “does not contain an animal.” The network was trained on
photos like the ones in figure 15, and it performed very well on
this task on the test set. But what did the network actually learn?
By performing a careful study, Will found an unexpected answer:
in part, the network learned to classify images with blurry
backgrounds as “contains an animal,” whether or not the image
actually contained an animal.14 The nature photos in the training
and test sets obeyed an important rule of photography: focus on
the subject of the photo. When the subject of the photo is an
animal, the animal is the focus and the background is blurred, as
in figure 15A. When the subject of the photo is the background,
as in figure 15B, nothing is blurred. To Will’s chagrin, his network
hadn’t learned to recognize animals; instead, it used simpler
cues—such as blurry backgrounds—that were statistically
associated with animals.

FIGURE 15: Illustration of “animal” versus “no animal” classification task. Note the
blurry background in the image on the left.

This is an example of a common phenomenon seen in
machine learning. The machine learns what it observes in the
data rather than what you (the human) might observe. If there



are statistical associations in the training data, even if irrelevant
to the task at hand, the machine will happily learn those instead
of what you wanted it to learn. If the machine is tested on new
data with the same statistical associations, it will appear to have
successfully learned to solve the task. However, the machine can
fail unexpectedly, as Will’s network did on images of animals
without a blurry background. In machine-learning jargon, Will’s
network “overfitted” to its specific training set, and thus can’t do
a good job of applying what it learned to images that differ from
those it was trained on.

In recent years, several research teams have investigated
whether ConvNets trained on ImageNet and other large data
sets have likewise overfitted to their training data. One group
showed that if ConvNets are trained on images downloaded
from the web (like those in ImageNet), they perform poorly on
images that were taken by a robot moving around a house with
a camera.15 It seems that random views of household objects can
look very different from photos that people put on the web.
Other groups have shown that superficial changes to images,
such as slightly blurring or speckling an image, changing some
colors, or rotating objects in the scene, can cause ConvNets to
make significant errors even when these perturbations don’t
affect humans’ recognition of objects.16 This unexpected fragility
of ConvNets—even those that have been said to “surpass
humans at object recognition”—indicates that they are
overfitting to their training data and learning something
different from what we are trying to teach them.



FIGURE 16: Labels assigned to photos by Google’s automated photo tagger,
including the infamous “Gorillas” tag

Biased AI
The unreliability of ConvNets can result in embarrassing—and
potentially damaging—errors. Google suffered a public relations
nightmare in 2015 after it rolled out an automated photo-
tagging feature (using a ConvNet) in its Photos app. In addition
to correctly tagging images with generic descriptions such as
“Airplanes,” “Cars,” and “Graduation,” the neural network tagged
a selfie featuring two African Americans as “Gorillas,” as shown
in figure 16. (After profuse apologies, the company’s short-term
solution was to remove the “Gorillas” tag from the network’s list
of possible categories.)



FIGURE 17: Example of a camera face-detection program identifying an Asian
face as “blinking”

Such repellent and widely mocked misclassifications are
embarrassing for the companies involved, but more subtle
errors due to racial or gender biases have been noted frequently
in vision systems powered by deep learning. Commercial face-
recognition systems, for example, tend to be more accurate on
white male faces than on female or nonwhite faces.17 Camera
software for face detection is sometimes prone to missing faces
with dark skin and to classifying Asian faces as “blinking” (figure
17).

Kate Crawford, a researcher at Microsoft and an activist for
fairness and transparency in AI, pointed out that one widely
used data set for training face-recognition systems contains
faces that are 77.5 percent male and 83.5 percent white. This is
not surprising, because the images were downloaded from
online image searches, and photos of faces that appear online
are skewed toward featuring famous or powerful people, who
are predominately white and male.



Of course, these biases in AI training data reflect biases in
our society, but the spread of real-world AI systems trained on
biased data can magnify these biases and do real damage. Face-
recognition systems, for example, are increasingly being
deployed as a “secure” way to identify people in credit-card
transactions, airport screening, and security cameras, and it may
be only a matter of time before they are used to verify identity in
voting systems, among other applications. Even small
differences in accuracy between racial groups can have
damaging repercussions in civil rights and access to vital
services.

Such biases can be mitigated in individual data sets by
having humans make sure that the photos (or other kinds of
data) are balanced in their representation of, say, racial or
gender groups. But this requires awareness and effort on the
part of the humans curating the data. Moreover, it is often hard
to tease out subtle biases and their effects. For example, one
research group noted that their AI system—trained on a large
data set of photos of people in different situations—would
sometimes mistakenly classify a man as “woman” when the man
was standing in a kitchen, an environment in which the data set
had more examples of women.18 In general, this kind of subtle
bias can be apparent after the fact but hard to detect ahead of
time.

The problem of bias in applications of AI has been getting a
lot of attention recently, with many articles, workshops, and even
academic research institutes devoted to this topic. Should the
data sets being used to train AI accurately mirror our own biased
society—as they often do now—or should they be tinkered with
specifically to achieve social reform aims? And who should be
allowed to specify the aims or do the tinkering?

Show Your Work



Remember back in school when your teacher would write “show
your work” in red on your math homework? For me, showing my
work was the least fun part of learning math but probably the
most important, because showing how I derived my answer
demonstrated that I had actually understood what I was doing,
had grasped the correct abstractions, and had arrived at the
answer for the right reasons. Showing my work also helped my
teacher figure out why I made particular errors.

More generally, you can often trust that people know what
they are doing if they can explain to you how they arrived at an
answer or a decision. However, “showing their work” is
something that deep neural networks—the bedrock of modern
AI systems—cannot easily do. Let’s consider the “dog” and “cat”
object-recognition task I described in chapter 4. Recall that a
convolutional neural network decides what object is contained in
an input image by performing a sequence of mathematical
operations (convolutions) propagated through many layers. For
a reasonably sized network, these can amount to billions of
arithmetic operations. While it would be easy to program the
computer to print out a list of all the additions and
multiplications performed by a network for a given input, such a
list would give us humans zero insight into how the network
arrived at its answer. A list of a billion operations is not an
explanation that a human can understand. Even the humans
who train deep networks generally cannot look under the hood
and provide explanations for the decisions their networks make.
MIT’s Technology Review magazine called this impenetrability “the
dark secret at the heart of AI.”19 The fear is that if we don’t
understand how AI systems work, we can’t really trust them or
predict the circumstances under which they will make errors.

Humans can’t always explain their thought processes either,
and you generally can’t look “under the hood” into other people’s
brains (or into their “gut feelings”) to figure out how they came
to any particular decision. But humans tend to trust that other



humans have correctly mastered basic cognitive tasks such as
object recognition and language comprehension. In part, you
trust other people when you believe that their thinking is like
your own. You assume, most often, that other humans you
encounter have had sufficiently similar life experiences to your
own, and thus you assume they are using the same basic
background knowledge, beliefs, and values that you do in
perceiving, describing, and making decisions about the world. In
short, where other people are concerned, you have what
psychologists call a theory of mind—a model of the other
person’s knowledge and goals in particular situations. None of
us have a similar “theory of mind” for AI systems such as deep
networks, which makes it harder to trust them.

It shouldn’t come as a surprise then that one of the hottest
new areas of AI is variously called “explainable AI,” “transparent
AI,” or “interpretable machine learning.” These terms refer to
research on getting AI systems—particularly deep networks—to
explain their decisions in a way that humans can understand.
Researchers in this area have come up with clever ways to
visualize the features that a given convolutional neural network
has learned and, in some cases, to determine which parts of the
input are most responsible for the output decision. Explainable
AI is a field that is progressing quickly, but a deep-learning
system that can successfully explain itself in human terms is still
elusive.

Fooling Deep Neural Networks
There is yet another dimension to the AI trustworthiness
question: Researchers have discovered that it is surprisingly easy
for humans to surreptitiously trick deep neural networks into
making errors. That is, if you want to deliberately fool such a



system, there turn out to be an alarming number of ways to do
so.

Fooling AI systems is not new. Email spammers, for example,
have been in an arms race with spam-detection programs for
decades. But the kinds of attacks to which deep-learning
systems seem to be vulnerable are at once subtler and more
troubling.

Remember AlexNet, which I discussed in chapter 5? It was
the convolutional neural network that won the 2012 ImageNet
challenge and that set in motion the dominance of ConvNets in
much of today’s AI world. If you’ll recall, AlexNet’s (top-5)
accuracy on ImageNet was 85 percent, which blew every other
competitor out of the water and shocked the computer-vision
community. However, a year after AlexNet’s win, a research
paper appeared, authored by Christian Szegedy of Google and
several others, with the deceptively mild title “Intriguing
Properties of Neural Networks.”20 One of the “intriguing
properties” described in the paper was that AlexNet could easily
be fooled.

In particular, the paper’s authors had discovered that they
could take an ImageNet photo that AlexNet classified correctly
with high confidence (for example, “School Bus”) and distort it by
making very small, specific changes to its pixels so that the
distorted image looked completely unchanged to humans but
was now classified with very high confidence by AlexNet as
something completely different (for example, “Ostrich”). The
authors called the distorted image an “adversarial example.”
Figure 18 shows a few samples of original images and their
adversarial twins. Can’t tell the difference? Congratulations! It
seems that you are human.

Szegedy and his collaborators created a computer program
that could, given any photo from ImageNet that was correctly
classified by AlexNet, find specific changes to the photo to create
a new adversarial example that looked unchanged to humans



but caused AlexNet to give highest confidence to an incorrect
category.

FIGURE 18: Original and “adversarial” examples for AlexNet. The left image in
each pair shows the original image, which was correctly classified by AlexNet.
The right image in each pair shows the adversarial example derived from this

image (small changes have been made to the pixels, but the new image
appears to humans to be identical to the original). Each adversarial example

was confidently classified by AlexNet as “Ostrich.”

Importantly, Szegedy and his collaborators found that this
susceptibility to adversarial examples wasn’t special to AlexNet;
they showed that several other convolutional neural networks—
with different architectures, hyperparameters, and training sets
—had similar vulnerabilities. Calling this an “intriguing property”
of neural networks is a little like calling a hole in the hull of a
fancy cruise liner a “thought-provoking facet” of the ship.
Intriguing, yes, and more investigation is needed, but if the leak
is not fixed, this ship is going down.

Not long after the paper by Szegedy and his colleagues
appeared, a group from the University of Wyoming published an
article with a more direct title: “Deep Neural Networks Are Easily
Fooled.”21 By using a biologically inspired computational method



called genetic algorithms,22 the Wyoming group was able to
computationally “evolve” images that look like random noise to
humans but for which AlexNet and other convolutional neural
networks assigned specific object categories with greater than
99 percent confidence. Figure 19 shows some examples. The
Wyoming group noted that deep neural networks (DNNs) “see
these objects as near-perfect examples of recognizable images,”
which “[raises] questions about the true generalization
capabilities of DNNs and the potential for costly exploits [that is,
malicious applications] of solutions that use DNNs.”23

FIGURE 19: Examples of images created by a genetic algorithm specifically to
fool a convolutional neural network. In each case, AlexNet (trained on the

ImageNet training set) assigned a confidence greater than 99 percent that the
image was an instance of the category shown.

Indeed, these two papers and subsequent related
discoveries raised not only questions but also genuine alarm in
the deep-learning community. If deep-learning systems, so
successful at computer vision and other tasks, can easily be
fooled by manipulations to which humans are not susceptible,
how can we say that these networks “learn like humans” or



“equal or surpass humans” in their abilities? It’s clear that
something very different from human perception is going on
here. And if these networks are going to be used for computer
vision in the real world, we’d better be darn sure that they are
safeguarded from hackers using these kinds of manipulations to
fool them.

All this has reenergized the small research community
focusing on “adversarial learning”—that is, developing strategies
that defend against potential (human) adversaries who could
attack machine-learning systems. Adversarial-learning
researchers often start their work by demonstrating possible
ways in which existing systems can be attacked, and some of the
recent demonstrations have been stunning. In the domain of
computer vision, one group of researchers developed a program
that could create eyeglass frames with specific patterns that fool
a face-recognition system into confidently misclassifying the
wearer as another person (figure 20).24 Another group developed
small, inconspicuous stickers that could be placed on a traffic
sign, resulting in a ConvNet-based vision system—similar to
those used in self-driving cars—to misclassify the sign (for
example, a stop sign is classified as a speed-limit sign).25 Yet
another group demonstrated a possible adversarial attack on
deep neural networks for medical image analysis: they showed
that it is not hard to alter an X-ray or microscopy image in a way
that is imperceptible to humans but that causes a network to
change its classification from, say, 99 percent confidence that
the image shows no cancer to 99 percent confidence that cancer
is present.26 This group noted that such attacks could potentially
be used by hospital personnel or others to create fraudulent
diagnoses in order to charge insurance companies for additional
(lucrative) diagnostic tests.



FIGURE 20: An AI researcher (left) wearing eyeglass frames with a pattern
specially designed to cause a deep neural network face recognizer, trained on

celebrity faces, to confidently classify the left photo as the actress Milla
Jovovich (right). The paper describing this study gives many other examples of

impersonation using “adversarial” eyeglass-frame patterns.

These are just a few examples of possible attacks that have
been concocted by various research groups. Many of the
possible attacks have been shown to be surprisingly robust: they
work on several different networks, even when these networks
are trained on different data sets. And computer vision isn’t the
only domain in which networks can be fooled; researchers have
also designed attacks that fool deep neural networks that deal
with language, including speech recognition and text analysis.
We can expect that as these systems become more widely
deployed in the real world, malicious users will discover many
other vulnerabilities in these systems.

Understanding and defending against such potential attacks
are a major area of research right now, but while researchers
have found solutions for specific kinds of attacks, there is still no
general defense method. Like any domain of computer security,
progress so far has a “whack-a-mole” quality, where one security
hole is detected and defended, but others are discovered that
require new defenses. Ian Goodfellow, an AI expert who is part
of the Google Brain team, says, “Almost anything bad you can
think of doing to a machine-learning model can be done right
now … and defending it is really, really hard.”27



Beyond the immediate issue of how to defend against
attacks, the existence of adversarial examples amplifies the
question I asked earlier: What, precisely, are these networks
learning? In particular, what are they learning that allows them
to be so easily fooled? Or perhaps more important, are we
fooling ourselves when we think these networks have actually
learned the concepts we are trying to teach them?

To my mind, the ultimate problem is one of understanding.
Consider figure 18, where AlexNet mistakes a school bus for an
ostrich. Why would this be very unlikely to happen to a human?
Even though AlexNet performs very well on ImageNet, we
humans understand many things about the objects we see that
are unknown to AlexNet or any other current AI system. We
know what objects look like in three dimensions and can imagine
this from a two-dimensional photo. We know what the function
of a given object is, what role the object’s parts play in its overall
function, and in what contexts an object usually appears. Seeing
an object brings up memories of seeing such objects in other
circumstances, from other viewpoints, as well as in other sensory
modalities (we remember what a given object feels like, smells
like, perhaps what it sounds like when dropped, and so on). All of
this background knowledge feeds into the human ability to
robustly recognize a given object. Even the most successful AI
vision systems lack this kind of understanding and the
robustness that it confers.

FIGURE 21: A visual illusion for humans: the horizontal line segments in A and B
are the same length, but most people perceive the segment in A to be longer



than the one in B.

I’ve heard some AI researchers argue that humans are also
susceptible to our own types of “adversarial examples”: visual
illusions. Like AlexNet classifying a school bus as an ostrich,
humans are susceptible to perceptual errors (for example, we
perceive the upper line in figure 21 to be longer than the lower
line, even though both are actually the same length). But the
kinds of errors that humans make are quite different from those
that convolutional neural networks are susceptible to: our ability
to recognize objects in everyday scenes has evolved to be very
robust, because our survival depends on it. Unlike today’s
ConvNets, human (and animal) perception is highly regulated by
cognition—the kind of context-dependent understanding that I
described above. Moreover, ConvNets used in today’s computer-
vision applications are typically completely feed-forward,
whereas the human visual system has many more feedback (that
is, reverse direction) connections than feed-forward connections.
Although neuroscientists don’t yet understand the function of all
this feedback, one might speculate that at least some of those
feedback connections effectively prevent vulnerability to the
kinds of adversarial examples that ConvNets are susceptible to.
So why not just give ConvNets the same kind of feedback? This is
an area of active research, but it turns out to be very difficult and
hasn’t produced the kind of success seen with feed-forward
networks.

Jeff Clune, an AI researcher at the University of Wyoming,
made a very provocative analogy when he noted that there is “a
lot of interest in whether Deep Learning is ‘real intelligence’ or a
‘Clever Hans.’”28 Clever Hans was a horse in early twentieth-
century Germany who could—his owner claimed—perform
arithmetic calculations as well as understand German. The horse
responded to questions such as “What is fifteen divided by
three?” by tapping his hoof the correct number of times. After



Clever Hans became an international celebrity, a careful
investigation eventually revealed that the horse did not actually
understand the questions or mathematical concepts put to him,
but was tapping in response to subtle, unconscious cues given
by the questioner. Clever Hans has become a metaphor for any
individual (or program!) that gives the appearance of
understanding but is actually responding to unintentional cues
given by a trainer. Does deep learning exhibit “true
understanding,” or is it instead a computational Clever Hans
responding to superficial cues in the data? This is currently the
subject of heated debates in the AI community, compounded by
the fact that AI researchers don’t necessarily agree on the
definition of “true understanding.”

On the one hand, deep neural networks, trained via
supervised learning, perform remarkably well (though still far
from perfectly) on many problems in computer vision, as well as
in other domains such as speech recognition and language
translation. Because of their impressive abilities, these networks
are rapidly being taken from research settings and employed in
real-world applications such as web search, self-driving cars, face
recognition, virtual assistants, and recommendation systems,
and it’s getting hard to imagine life without these AI tools. On
the other hand, it’s misleading to say that deep networks “learn
on their own” or that their training is “similar to human learning.”
Recognition of the success of these networks must be tempered
with a realization that they can fail in unexpected ways because
of overfitting to their training data, long-tail effects, and
vulnerability to hacking. Moreover, the reasons for decisions
made by deep neural networks are often hard to understand,
which makes their failures hard to predict or fix. Researchers are
actively working on making deep neural networks more reliable
and transparent, but the question remains: Will the fact that
these systems lack humanlike understanding inevitably render
them fragile, unreliable, and vulnerable to attacks? And how



should this factor into our decisions about applying AI systems
in the real world? The next chapter explores some of the
formidable challenges of balancing the benefits of AI with the
risks of its unreliability and misuse.



7

On Trustworthy and Ethical AI

Imagine yourself in a self-driving car, late at night, after the
office Christmas party. It’s dark out, and snow is falling. “Car,
take me home,” you say, tired and a little tipsy. You lean back,
gratefully allowing your eyes to close as the car starts itself up
and pulls into traffic.

All good, but how safe should you feel? The success of self-
driving cars is crucially dependent on machine learning
(especially deep learning), particularly for the cars’ computer-
vision and decision-making components. How can we determine
if these cars have successfully learned all that they need to
know?

This is the billion-dollar question for the self-driving car
industry. I’ve encountered conflicting opinions from experts on
how soon we can expect self-driving cars to play a significant
role in daily life, with predictions ranging (at the time of this
writing) from a few years to many decades. Self-driving cars have
the potential to vastly improve our lives. Automated vehicles
could substantially reduce the millions of annual deaths and
injuries due to auto accidents, many of them caused by
intoxicated or distracted drivers. In addition, automated vehicles
would allow their human passengers to be productive rather
than idle during commute times. These vehicles also have the
potential to be more energy efficient than cars with human



drivers and will be a godsend for blind or handicapped people
who can’t drive. But all this will come to pass only if we humans
are willing to trust these vehicles with our lives.

Machine learning is being deployed to make decisions
affecting the lives of humans in many domains. What assurances
do you have that the machines creating your news feed,
diagnosing your diseases, evaluating your loan applications, or—
God forbid—recommending your prison sentence have learned
enough to be trustworthy decision makers?

These are vexing questions not just for AI researchers but
also for society as a whole, which must eventually weigh the
many current and future positive uses of AI against concerns
about its trustworthiness and misuse.

Beneficial AI
When one considers the role of AI in our society, it might be easy
to focus on the downsides. However, it’s essential to remember
that there are huge benefits that AI systems already bring to
society and that they have the potential to be even more
beneficial. Current AI technology is central to services you
yourself might use all the time, sometimes without even
knowing that AI is involved, including speech transcription, GPS
navigation and trip planning, email spam filters, language
translation, credit-card fraud alerts, book and music
recommendations, protection against computer viruses, and
optimizing energy usage in buildings.

If you are a photographer, filmmaker, fine artist, or musician,
you might be using AI systems that assist you in creative
projects, such as programs that help photographers edit their
photos or assist composers in music notation or arrangements.
If you are a student, you might benefit from “intelligent tutoring
systems” that adapt to your particular learning style. If you are a



scientist, there’s a good chance you have used one of the many
available AI tools that help analyze your data. If you are blind or
otherwise visually disabled, you might use smartphone
computer-vision apps that read handwritten or printed text (for
example, on signs, restaurant menus, or money). If you are
hearing-impaired, you can now see quite accurate captions on
YouTube videos and, in some cases, get real-time speech
transcription during a lecture. These are just a few examples of
the ways in which current AI tools are improving people’s lives.
Many additional AI technologies are still in research mode but
are on the verge of becoming mainstream.

In the near future, AI applications will likely be widespread in
health care. We will see AI systems assisting physicians in
diagnosing diseases and in suggesting treatments; discovering
new drugs; and monitoring the health and safety of the elderly
in their homes. Scientific modeling and data analysis will
increasingly rely on AI tools—for example, in improving models
of climate change, population growth and demographic change,
ecological and food science, and other major issues that society
will be facing over the next century. For Demis Hassabis, the
cofounder of Google’s DeepMind group, this is the most
important potential benefit of AI:

We might have to come to the sobering realisation that even with the
smartest set of humans on the planet working on these problems,
these [problems] may be so complex that it’s difficult for individual
humans and scientific experts to have the time they need in their
lifetimes to even innovate and advance.… It’s my belief we’re going to
need some assistance and I think AI is the solution to that.1

We’ve all heard that in the future AI will take over the jobs
that humans hate—low-wage jobs that are boring, exhausting,
degrading, exploitative, or downright dangerous. If this actually
happens, it could be a true boon for human well-being. (Later I’ll
discuss the other side of this coin—AI taking away too many



human jobs.) Robots are already widely used for menial and
repetitive factory tasks, though there are many such jobs still
beyond the abilities of today’s robots. But as AI progresses, more
and more of these jobs could be taken over by automation.
Examples of future AI workplace applications include self-driving
trucks and taxis, as well as robots for harvesting fruits, fighting
fires, removing land mines, and performing environmental
cleanups. In addition, robots will likely see an even larger role
than they have now in planetary and space exploration.

Will it actually benefit society for AI systems to take over
such jobs? We can look to the history of technology to give us
some perspective. Here are a few examples of jobs that humans
used to do but that technology automated long ago, at least in
developed countries: clothes washer; rickshaw driver; elevator
operator; punkawallah (a servant in India whose sole job was to
work a manual fan for cooling the room, before the days of
electric fans); computer (a human, usually female, who
performed tedious calculations by hand, particularly during
World War II). Most people will agree that in those instances
replacing humans with machines in such jobs made life better all
around. One could argue that today’s AI is simply extending that
same arc of progress: improving life for humans by increasingly
automating the necessary jobs that no one wants to do.

The Great AI Trade-Off
The AI researcher Andrew Ng has optimistically proclaimed, “AI is
the new electricity.” Ng explains further: “Just as electricity
transformed almost everything 100 years ago, today I actually
have a hard time thinking of an industry that I don’t think AI will
transform in the next several years.”2 This is an appealing
analogy: the idea that soon AI will be as necessary—and as
invisible—in our electronic devices as electricity itself. However, a



major difference is that the science of electricity was well
understood before it was widely commercialized. We are good at
predicting the behavior of electricity. This is not the case for
many of today’s AI systems.

This brings us to what you might call the Great AI Trade-Off.
Should we embrace the abilities of AI systems, which can
improve our lives and even help save lives, and allow these
systems to be employed ever more extensively? Or should we be
more cautious, given current AI’s unpredictable errors,
susceptibility to bias, vulnerability to hacking, and lack of
transparency in decision-making? To what extent should humans
be required to remain in the loop in different AI applications?
What should we require of an AI system in order to trust it
enough to let it work autonomously? These questions are still
hotly debated, even as AI is increasingly deployed and its
promised future applications (for example, self-driving cars) are
touted as being just over the horizon.

The lack of general agreement on these issues was
underscored by a recent study carried out by the Pew Research
Center.3 In 2018, Pew analysts canvassed nearly one thousand
“technology pioneers, innovators, developers, business and
policy leaders, researchers and activists,” asking them to reply to
these questions:

By 2030, do you think it is most likely that advancing AI and related
technology systems will enhance human capacities and empower
them? That is, most of the time, will most people be better off than
they are today? Or is it most likely that advancing AI and related
technology systems will lessen human autonomy and agency to such
an extent that most people will not be better off than the way things
are today?

The respondents were divided: 63 percent predicted that
progress in AI would leave humans better off by 2030, while 37
percent disagreed. Opinions ranged from the view that AI “can
virtually eliminate global poverty, massively reduce disease and



provide better education to almost everyone on the planet” to
predictions of an apocalyptic future: legions of jobs taken over
by automation, erosion of privacy and civil rights due to AI
surveillance, amoral autonomous weapons, unchecked decisions
by opaque and untrustworthy computer programs,
magnification of racial and gender bias, manipulation of the
mass media, increase of cybercrime, and what one respondent
called “true, existential irrelevance” for humans.

Machine intelligence presents a knotty array of ethical
issues, and discussions related to the ethics of AI and big data
have filled several books.4 In order to illustrate the complexity of
the issues, I’ll dig deeper into one example that is getting a lot of
attention these days: automated face recognition.

The Ethics of Face Recognition
Face recognition is the task of labeling a face in an image or
video (or real-time video stream) with a name. Facebook, for
example, applies a face-recognition algorithm to every photo
that is uploaded to its site, trying to detect the faces in the photo
and to match them with known users (at least those users who
haven’t disabled this feature).5 If you are on Facebook and
someone posts a photo that includes your face, the system
might ask you if you want to “tag yourself” in the photo. The
accuracy of Facebook’s face-recognition algorithm can be
simultaneously impressive and creepy. Not surprisingly, this
accuracy comes from using deep convolutional neural networks.
The software can often recognize faces not only when the face is
front and center in a photo but even when a person is one of
many in a crowd.

Face-recognition technology has many potential upsides,
including helping people search through their photo collections,
enabling users with vision impairments to identify the people



they encounter, locating missing children or criminal fugitives by
scanning photos and videos for their faces, and detecting
identity theft. However, it’s just as easy to imagine applications
that many people find offensive or threatening. Amazon, for
example, markets its face-recognition system (with the strangely
dystopian-sounding name Rekognition) to police departments,
which can compare, say, security-camera footage with a
database of known offenders or likely suspects.

Privacy is an obvious issue. Even if I’m not on Facebook (or
any other social media platform with face recognition), photos
including me might be tagged and later automatically
recognized on the site, without my permission. Consider
FaceFirst, a company that offers face-recognition services for a
fee. As reported by the magazine New Scientist, “Face First  … is
rolling out a system for retailers that it says will ‘boost sales by
recognizing high-value customers each time they shop’ and send
‘alerts when known litigious individuals enter any of your
locations.’”6 Many other companies offer similar services.

Loss of privacy is not the only danger here. An even larger
worry is reliability: face-recognition systems can make errors. If
your face is matched in error, you might be barred from a store
or an airplane flight or wrongly accused of a crime. What’s more,
present-day face-recognition systems have been shown to have
a significantly higher error rate on people of color than on white
people. The American Civil Liberties Union (ACLU), which
vigorously opposes the use of face-recognition technology for
law enforcement on civil rights grounds, tested Amazon’s
Rekognition system (using its default settings) on the 535
members of the U.S. Congress, comparing a photo of each
member against a database of people who have been arrested
on criminal charges. They found that the system incorrectly
matched 28 out of the 535 members of Congress with people in
the criminal database. Twenty-one percent of the errors were on



photos of African American representatives (African Americans
make up only about 9 percent of Congress).7

Amid the fallout from the ACLU’s tests and other studies
showing the unreliability and biases of face recognition, several
high-tech companies have announced that they oppose using
face recognition for law enforcement and surveillance. For
example, Brian Brackeen, the CEO of the face-recognition
company Kairos, wrote the following in a widely circulated
article:

Facial recognition technologies, used in the identification of suspects,
negatively affects people of color. To deny this fact would be a lie.… I
(and my company) have come to believe that the use of commercial
facial recognition in law enforcement or in government surveillance of
any kind is wrong—and that it opens the door for gross misconduct by
the morally corrupt.… We deserve a world where we’re not
empowering governments to categorize, track and control citizens.8

In a blog post on his company’s website, Microsoft’s
president and chief legal officer, Brad Smith, called for Congress
to regulate face recognition:

Facial recognition technology raises issues that go to the heart of
fundamental human rights protections like privacy and freedom of
expression. These issues heighten responsibility for tech companies
that create these products. In our view, they also call for thoughtful
government regulation and for the development of norms around
acceptable uses. Facial recognition will require the public and private
sectors alike to step up—and to act.9

Google followed suit, announcing that it would not offer
general-purpose face-recognition services via its cloud AI
platform until the company can “ensure its use is aligned with
our principles and values, and avoids abuse and harmful
outcomes.”10

The response of these companies is encouraging, but it
brings to the forefront another vexing issue: To what extent



should AI research and development be regulated, and who
should do the regulating?

Regulating AI
Given the risks of AI technologies, many practitioners of AI,
myself included, are in favor of some kind of regulation. But the
regulation shouldn’t be left solely in the hands of AI researchers
and companies. The problems surrounding AI—trustworthiness,
explainability, bias, vulnerability to attack, and morality of use—
are social and political issues as much as they are technical ones.
Thus, it is essential that the discussion around these issues
include people with different perspectives and backgrounds.
Simply leaving regulation up to AI practitioners would be as
unwise as leaving it solely up to government agencies.

In one example of the complexity of crafting such
regulations, in 2018 the European Parliament enacted a
regulation on AI that some have called the “right to
explanation.”11 This regulation requires, in the case of
“automated decision making,” “meaningful information about
the logic involved” in any decision that affects an EU citizen. This
information is required to be communicated “in a concise,
transparent, intelligible and easily accessible form, using clear
and plain language.”12 This opens the floodgates for
interpretation. What counts as “meaningful information” or “the
logic involved”? Does this regulation prohibit the use of hard-to-
explain deep-learning methods in making decisions that affect
individuals (such as loans and face recognition)? Such
uncertainties will no doubt ensure gainful employment for policy
makers and lawyers for a long time to come.

I believe that regulation of AI should be modeled on the
regulation of other technologies, particularly those in biological
and medical sciences, such as genetic engineering. In those



fields, regulation—such as quality assurance and the analysis of
risks and benefits of technologies—occurs via cooperation
among government agencies, companies, nonprofit
organizations, and universities. Moreover, there are now
established fields of bioethics and medical ethics, which have
considerable influence on decisions about the development and
application of technologies. AI research and its applications very
much need a well-thought-out regulatory and ethics
infrastructure.

This infrastructure is just beginning to be formed. In the
United States, state governments are starting to look into
creating regulations, such as those for face recognition or self-
driving vehicles. However, for the most part, the universities and
the companies that create AI systems have been left to regulate
themselves.

A number of nonprofit think tanks have cropped up to fill the
void, often funded by wealthy tech entrepreneurs who are
worried about AI. These organizations—with names such as
Future of Humanity Institute, Future of Life Institute, and Centre
for the Study of Existential Risk—hold workshops, sponsor
research, and create educational materials and policy
suggestions on the topics of safe and ethical uses of AI. An
umbrella organization, called the Partnership on AI, has been
trying to bring together such groups to “serve as an open
platform for discussion and engagement about AI and its
influences on people and society.”13

One stumbling block is that there is no general agreement in
the field on what the priorities for developing regulation and
ethics should be. Should the immediate focus be on algorithms
that can explain their reasoning? On data privacy? On
robustness of AI systems to malicious attacks? On bias in AI
systems? On the potential “existential risk” from superintelligent
AI? My own opinion is that too much attention has been given to
the risks from superintelligent AI and far too little to deep



learning’s lack of reliability and transparency and its vulnerability
to attacks. I will say more about the idea of superintelligence in
the final chapter.

Moral Machines
So far, my discussion has focused on ethical issues of how
humans use AI. But there’s another important question: Could
machines themselves be able to have their own sense of
morality, complete enough for us to allow them to make ethical
decisions on their own, without humans having to oversee
them? If we are going to give decision-making autonomy to face-
recognition systems, self-driving cars, elder-care robots, or even
robotic soldiers, don’t we need to give these machines the same
ability to deal with ethical and moral questions that we humans
have?

People have been thinking about “machine morality” for as
long as they’ve been thinking about AI.14 Probably the best-
known discussion of machine morality comes from Isaac
Asimov’s science fiction stories, in which he proposed the three
“fundamental Rules of Robotics”:

1.  A robot may not injure a human being, or, through inaction,
allow a human being to come to harm.

2.  A robot must obey the orders given to it by human beings
except where such orders would conflict with the First Law.

3.  A robot must protect its own existence, as long as such
protection does not conflict with the First or Second Law.15

These laws have become famous, but in truth, Asimov’s
purpose was to show how such a set of rules would inevitably
fail. “Runaround,” the 1942 story in which Asimov first introduced
these laws, features a situation in which a robot, following the
second law, moves toward a dangerous substance, at which
point the third law kicks in, so the robot moves away, at which



point the second law kicks in again, trapping the robot in an
endless loop, resulting in a near disaster for the robot’s human
masters. Asimov’s stories often focused on the unintended
consequences of programming ethical rules into robots. Asimov
was prescient: as we’ve seen, the problem of incomplete rules
and unintended consequences has hamstrung all approaches to
rule-based AI intelligence; moral reasoning is no different.

The science fiction writer Arthur C. Clarke used a similar plot
device in his 1968 book, 2001: A Space Odyssey.16 The artificially
intelligent computer HAL is programmed to always be truthful to
humans, but at the same time to withhold the truth from human
astronauts about the actual purpose of their space mission. HAL,
unlike Asimov’s clueless robot, suffers from the psychological
pain of this cognitive dissonance: “He was … aware of the conflict
that was slowly destroying his integrity—the conflict between
truth, and concealment of truth.”17 The result is a computer
“neurosis” that turns HAL into a killer. Reflecting on real-life
machine morality, the mathematician Norbert Wiener noted as
long ago as 1960 that “we had better be quite sure that the
purpose put into the machine is the purpose which we really
desire.”18

Wiener’s comment captures what is called the value
alignment problem in AI: the challenge for AI programmers to
ensure that their systems’ values align with those of humans.
But what are the values of humans? Does it even make sense to
assume that there are universal values that society shares?

Welcome to Moral Philosophy 101. We’ll start with every
moral philosophy student’s favorite thought experiment, the
trolley problem: You are driving a speeding trolley down a set of
tracks, and just ahead you see five workers standing together in
the middle of the tracks. You step on the brakes, but you find
that they don’t work. Fortunately, there is a spur of tracks
leading off to the right. You can steer the trolley onto the spur
and avoid hitting the five workers. Unfortunately, there is a



single worker standing in the middle of the spur. If you do
nothing, the trolley will drive straight into the five workers and
kill them all. If you steer the trolley to the right, the trolley will kill
the single worker. What is the moral thing to do?

The trolley problem has been a staple of undergraduate
ethics classes for the last century. Most people answer that it
would be morally preferable for the driver to steer onto the spur,
killing the single worker and saving the group of five. But
philosophers have found that a different framing of essentially
the same dilemma can lead people to the opposite answer.19

Human reasoning about moral dilemmas turns out to be very
sensitive to the way in which the dilemmas are presented.

The trolley problem has recently reemerged as part of the
media’s coverage of self-driving cars,20 and the question of how
an autonomous vehicle should be programmed to deal with
such problems has become a central talking point in discussions
on AI ethics. Many AI ethics thinkers have pointed out that the
trolley problem itself, in which the driver has only two horrible
options, is a highly contrived scenario that no real-world driver
will ever encounter. But the trolley problem has become a kind
of symbol for asking about how we should program self-driving
cars to make moral decisions on their own.

In 2016, three researchers published results from surveys of
several hundred people who were given trolley-problem-like
scenarios that involved self-driving cars, and were asked for their
views of the morality of different actions. In one survey, 76
percent of participants answered that it would be morally
preferable for a self-driving car to sacrifice one passenger rather
than killing ten pedestrians. But when asked if they would buy a
self-driving car programmed to sacrifice its passengers in order
to save a much larger number of pedestrians, the overwhelming
majority of survey takers responded that they themselves would
not buy such a car.21 According to the authors, “We found that
participants in six Amazon Mechanical Turk studies approved of



utilitarian AVs [autonomous vehicles] (that is, AVs that sacrifice
their passengers for the greater good) and would like others to
buy them, but they would themselves prefer to ride in AVs that
protect their passengers at all costs.” In his commentary on this
study, the psychologist Joshua Greene noted, “Before we can put
our values into machines, we have to figure out how to make our
values clear and consistent.”22 This seems to be harder than we
might have thought.

Some AI ethics researchers have suggested that we give up
trying to directly program moral rules for machines, and instead
have machines learn moral values on their own by observing
human behavior.23 However, this self-learning approach inherits
all of the problems of machine learning that I described in the
previous chapter.

To my mind, progress on giving computers moral
intelligence cannot be separated from progress on other kinds
of intelligence: the true challenge is to create machines that can
actually understand the situations that they confront. As Isaac
Asimov’s stories demonstrate, a robot can’t reliably follow an
order to avoid harming a human unless it can understand the
concept of harm in different situations. Reasoning about
morality requires one to recognize cause-and-effect
relationships, to imagine different possible futures, to have a
sense of the beliefs and goals of others, and to predict the likely
outcomes of one’s actions in whatever situation one finds
oneself. In other words, a prerequisite to trustworthy moral
reasoning is general common sense, which, as we’ve seen, is
missing in even the best of today’s AI systems.

So far in this book we’ve seen how deep neural networks,
trained on enormous data sets, can rival the visual abilities of
humans in particular tasks. We’ve also seen some of the
weaknesses of these networks, including their reliance on
massive quantities of human-labeled data and their propensity
to fail in very un-humanlike ways. How can we create an AI



system that truly learns on its own—one that is more
trustworthy because, like humans, it can reason about its current
situation and plan for the future? In the next part of the book, I’ll
describe how AI researchers are using games such as chess, Go,
and even Atari video games as “microcosms” in order to develop
machines with more humanlike learning and reasoning
capabilities, and I’ll assess how the resulting superhuman game-
playing machines might transfer their skills to the real world.



Part III

Learning to Play



8

Rewards for Robots

When the journalist Amy Sutherland was doing research for a
book on exotic animal trainers, she learned that their primary
method is preposterously simple: “reward behavior I like and
ignore behavior I don’t.” And as she wrote in The New York Times’
Modern Love column, “Eventually it hit me that the same
techniques might work on that stubborn but lovable species, the
American husband.” Sutherland wrote about how, after years of
futile nagging, sarcasm, and resentment, she used this simple
method to covertly train her oblivious husband to pick up his
socks, find his own car keys, show up to restaurants on time, and
shave more regularly.1

This classic training technique, known in psychology as
operant conditioning, has been used for centuries on animals
and humans. Operant conditioning inspired an important
machine-learning approach called reinforcement learning.
Reinforcement learning contrasts with the supervised-learning
method I’ve described in previous chapters: in its purest form,
reinforcement learning requires no labeled training examples.
Instead, an agent—the learning program—performs actions in an
environment (usually a computer simulation) and occasionally
receives rewards from the environment. These intermittent
rewards are the only feedback the agent uses for learning. In the
case of Amy Sutherland’s husband, the rewards were her smiles,



kisses, and words of praise. While a computer program might
not respond to a kiss or an enthusiastic “you’re the greatest,” it
can be made to respond to a machine equivalent of such
appreciation—such as positive numbers added to its memory.

FIGURE 22: A Sony Aibo robotic dog, about to kick a robot soccer ball

While reinforcement learning has been part of the AI toolbox
for decades, it has long been overshadowed by neural networks
and other supervised-learning methods. This changed in 2016
when reinforcement learning played a central role in a stunning
and momentous achievement in AI: a program that learned to
beat the best humans at the complex game of Go. In order to
explain that program, as well as other recent achievements of
reinforcement learning, I’ll first take you through a simple
example to illustrate how reinforcement learning works.

Training Your Robo-Dog
For our illustrative example, let’s look to the fun game of robot
soccer, in which humans (usually college students) program
robots to play a simplified version of soccer on a room-sized
“field.” Sometimes the players are cute doglike Aibo robots like
the one shown in figure 22. An Aibo robot (made by Sony) has a
camera to capture visual inputs, an internal programmable



computer, and a collection of sensors and motors that enable it
to walk, kick, head-butt, and even wag its plastic tail.

Imagine that we want to teach our robo-dog the simplest
soccer skill: when facing the ball, walk over to it, and kick it. A
traditional AI approach would be to program the robot with the
following rules: Take a step toward the ball. Repeat until one of
your feet is touching the ball. Then kick the ball with that foot. Of
course, shorthand descriptions such as “take a step toward the
ball,” “until one of your feet is touching the ball,” and “kick the
ball” must be carefully translated into detailed sensor and motor
operations built into the Aibo.

Such explicit rules might be sufficient for a task as simple as
this one. However, the more “intelligent” you want your robot to
be, the harder it is to manually specify rules for behavior. And of
course, it’s impossible to devise a set of rules that will work in
every situation. What if there is a large puddle between the
robot and the ball? What if a soccer cone is blocking the robot’s
vision? What if a rock is blocking the ball’s movement? As always,
the real world is awash with hard-to-predict edge cases. The
promise of reinforcement learning is that the agent—here our
robo-dog—can learn flexible strategies on its own simply by
performing actions in the world and occasionally receiving
rewards (that is, reinforcement) without humans having to
manually write rules or directly teach the agent every possible
circumstance.

Let’s call our robo-dog Rosie, after my favorite television
robot, the wry robotic housekeeper from the classic cartoon The
Jetsons.2 To make things easier for this example, let’s assume that
Rosie comes from the factory preprogrammed with the following
ability: if a soccer ball is in Rosie’s line of sight, she can estimate
the number of steps she would need to take to get to the ball.
This number is called the “state.” In general, the state of an
agent at a given time is the agent’s perception of its current
situation. Rosie is the simplest of possible agents, in that her



state is a single number. When I say that Rosie is “in” a given
state x, I mean that she is currently estimating that she is x steps
away from the ball.

In addition to being able to identify her state, Rosie has three
built-in actions she can perform: she can take a step Forward,
take a step Backward, and she can Kick. (If Rosie happens to step
out-of-bounds, she is programmed to immediately step back in.)
In the spirit of operant conditioning, let’s give Rosie a reward
only when she succeeds in kicking the ball. Note that Rosie
doesn’t know ahead of time which, if any, states or actions will
lead to rewards.

Given that Rosie is a robot, her “reward” is simply a number,
say, 10, added to her “reward memory.” We can consider the
number 10 the robot equivalent of a dog treat. Or perhaps not.
Unlike a real dog, Rosie has no intrinsic desire for treats, positive
numbers, or anything else. As I’ll detail below, in reinforcement
learning, a human-created algorithm guides Rosie’s process of
learning in response to rewards; that is, the algorithm tells Rosie
how to learn from her experiences.

Reinforcement learning occurs by having Rosie take actions
over a series of learning episodes, each of which consists of some
number of iterations. At each iteration, Rosie determines her
current state and chooses an action to take. If Rosie receives a
reward, she then learns something, as I’ll illustrate below. Here
I’ll let each episode last until Rosie manages to kick the ball, at
which time she receives a reward. This might take a long time. As
in training a real dog, we have to be patient.

Figure 23 illustrates a hypothetical learning episode. The
episode begins with the trainer (me) placing Rosie and the ball in
some initial locations on the field, with Rosie facing the ball
(figure 23A). Rosie determines her current state: twelve steps
away from the ball. Because Rosie hasn’t learned anything yet,
our dog, an innocent “tabula rasa,” doesn’t know which action
should be preferred, so she chooses an action at random from



her three possibilities: Forward, Backward, Kick. Let’s say she
chooses Backward and takes a step back. We humans can see
that Backward is a bad action to take, but remember, we’re
letting Rosie figure out on her own how to perform this task.



FIGURE 23: A hypothetical first episode of reinforcement learning

At iteration 2 (figure 23B), Rosie determines her new state:
thirteen steps from the ball. She then chooses a new action to
take, again at random: Forward. At iteration 3 (figure 23C), Rosie
determines her “new” state: twelve steps away from the ball.
She’s back to square one, but Rosie doesn’t even know that she
has been in this state before! In the purest form of
reinforcement learning, the learning agent doesn’t remember its
previous states. In general, remembering previous states might
take a lot of memory and doesn’t turn out to be necessary.

At iteration 3, Rosie—again at random—chooses the action
Kick, but because she’s kicking empty air, she doesn’t get a
reward. She has yet to learn that kicking gives a reward only if
she’s next to the ball.

Rosie continues to choose random actions, without any
feedback, for many iterations. But at some point, let’s say at
iteration 351, just by dumb luck Rosie ends up next to the ball
and chooses Kick (figure 23D). Finally, she gets a reward and uses
it to learn something.

What does Rosie learn? Here we take the simplest approach
to reinforcement learning: upon receiving a reward, Rosie learns
only about the state and action that immediately preceded the
reward. In particular, Rosie learns that if she is in that state (for
example, zero steps from the ball), taking that action (for
example, Kick) is a good idea. But that’s all she learns. She
doesn’t learn, for example, that if she is zero steps from the ball,
Backward would be a bad choice. After all, she hasn’t tried that
yet. For all she knows, taking a step backward in that state might
lead to a much bigger reward! Rosie also doesn’t learn at this
point that if she is one step away, Forward would be a good
choice. She has to wait for the next episode for that. Learning
too much at one time can be detrimental; if Rosie happens to
kick the air two steps away from the ball, we don’t want her to



learn that this ineffective kick was actually a necessary step
toward getting the reward. In humans, this kind of behavior
might be called superstition—namely, erroneously believing that
a particular action can help cause a particular good or bad
outcome. In reinforcement learning, superstition is something
that you have to be careful to avoid.

A crucial notion in reinforcement learning is that of the value
of performing a particular action in a given state. The value of
action A in state S is a number reflecting the agent’s current
prediction of how much reward it will eventually obtain if, when
in state S, it performs action A, and then continues performing
high-value actions. Let me explain. If your current state is
“holding a chocolate in your hand,” an action with high value
would be to bring your hand to your mouth. Subsequent actions
with high value would be to open your mouth, put the chocolate
inside, and chew. Your reward is the delicious sensation of eating
the chocolate. Bringing your hand to your mouth doesn’t
immediately produce this reward, but this action is on the right
path, and if you’ve eaten chocolate before, you can predict the
intensity of the upcoming reward. The goal of reinforcement
learning is for the agent to learn values that are good
predictions of upcoming rewards (assuming that the agent
keeps doing the right thing after taking the action in question).3
As we’ll see, the process of learning the values of particular
actions in a given state typically takes many steps of trial and
error.



FIGURE 24: Rosie’s Q-table after her first episode of reinforcement learning

Rosie keeps track of the values of actions in a big table in her
computer memory. This table, illustrated in figure 24, lists all the
possible states for Rosie (that is, all possible distances she could
be from the ball, up to the length of the field), and for each state,
her possible actions. Given a state, each action in that state has a
numerical value; these values will change—becoming more
accurate predictions of upcoming rewards—as Rosie continues
to learn. This table of states, actions, and values is called the Q-
table. This form of reinforcement learning is sometimes called Q-
learning. The letter Q is used because the letter V (for value) was
used for something else in the original paper on Q-learning.4

At the beginning of Rosie’s training, I initialize the Q-table by
setting all the values to 0—a “blank slate.” When Rosie receives a
reward for kicking the ball at the end of episode 1, the value of
the action Kick when in state “zero steps away” is updated to 10,
the value of the reward. In the future, when Rosie is in the “zero
steps away” state, she can look at the Q-table, see that Kick has
the highest value—that is, it predicts the highest reward—and
decide to choose Kick rather than choosing randomly. That’s all
that “learning” means here!

Episode 1 ended with Rosie finally kicking the ball. We now
move on to episode 2 (figure 25), which starts with Rosie and the
ball in new locations (figure 25A). Just as before, at each iteration
Rosie determines her current state—initially, six steps away—
and chooses an action, now by looking in her Q-table. But at this
point, the values of actions in her current state are still all 0s;
there’s no information yet to help her choose among them. So
Rosie again chooses an action at random: Backward. And she
chooses Backward again at the next iteration (figure 25B). Our
robo-dog’s training has a long way to go.



FIGURE 25: The second episode of reinforcement learning

Everything continues as before, until Rosie’s floundering
random trial-and-error actions happen to land her one step away



from the ball (figure 25C), and she happens to choose Forward.
Suddenly Rosie finds her foot next to the ball (figure 25D), and
the Q-table has something to say about this state. In particular, it
says that her current state—zero steps from the ball—has an
action—Kick—that is predicted to lead to a reward of 10. Now
she can use this information, learned at the previous episode, to
choose an action to perform, namely Kick. But here’s the essence
of Q-learning: Rosie can now learn something about the action
(Forward) she took in the immediately previous state (one step
away). That is what led her to be in the excellent position she is
in now! Specifically, the value of action Forward in the state “one
step away” is updated in the Q-table to have a higher value,
some fraction of the value of the action “Kick when zero steps
away,” which directly leads to a reward. Here I’ve updated this
value to 8 (figure 26).

FIGURE 26: Rosie’s Q-table after her second episode of reinforcement learning

The Q-table now tells Rosie that it’s really good to kick when
in the “zero steps away” state and that it’s almost as good to step
forward when in the “one step away” state. The next time Rosie
finds herself in the “one step away” state, she’ll have some
information about what action she should take, as well as the
ability to learn an update for the immediately past action—the
Forward action in the “two steps away” state. Note that it is
important for these learned action values to be reduced
(“discounted”) as they go back in time from the actual reward;



this allows the system to learn an efficient path to an actual
reward.

Reinforcement learning—here, the gradual updating of
values in the Q-table—continues, episode to episode, until Rosie
has finally learned to perform her task from any initial starting
point. The Q-learning algorithm is a way to assign values to
actions in a given state, including those actions that don’t lead
directly to rewards but that set the stage for the relatively rare
states in which the agent does receive rewards.

I wrote a program that simulated Rosie’s Q-learning process
as described above. At the beginning of each episode, Rosie was
placed, facing the ball, a random number of steps away (with a
maximum of twenty-five and a minimum of zero steps away). As
I mentioned earlier, if Rosie stepped out-of-bounds, my program
simply has her step back in. Each episode ended when Rosie
succeeded in reaching and kicking the ball. I found that it took
about three hundred episodes for her to learn to perform this
task perfectly, no matter where she started.

This “training Rosie” example captures much of the essence
of reinforcement learning, but I left out many issues that
reinforcement-learning researchers face for more complex
tasks.5 For example, in real-world tasks, the agent’s perception of
its state is often uncertain, unlike Rosie’s perfect knowledge of
how many steps she is from the ball. A real soccer-playing robot
might have only a rough estimate of distance, or even some
uncertainty about which light-colored, small object on the soccer
field is actually the ball. The effects of performing an action can
also be uncertain: for example, a robot’s Forward action might
move it different distances depending on the terrain, or even
result in the robot falling down or colliding with an unseen
obstacle. How can reinforcement learning deal with
uncertainties like these?

Additionally, how should the learning agent choose an action
at each time step? A naive strategy would be to always choose



the action with the highest value for the current state in the Q-
table. But this strategy has a problem: it’s possible that other, as-
yet-unexplored actions will lead to a higher reward. How often
should you explore—taking actions that you haven’t yet tried—
and how often should you choose actions that you already
expect to lead to some reward? When you go to a restaurant, do
you always order the meal you’ve already tried and found to be
good, or do you try something new, because the menu might
contain an even better option? Deciding how much to explore
new actions and how much to exploit (that is, stick with) tried-
and-true actions is called the exploration versus exploitation
balance. Achieving the right balance is a core issue for making
reinforcement learning successful.

These are samples of ongoing research topics among the
growing community of people working on reinforcement
learning. Just as in the field of deep learning, designing
successful reinforcement-learning systems is still a difficult (and
sometimes lucrative!) art, mastered by a relatively small group of
experts who, like their deep-learning counterparts, spend a lot of
time tuning hyperparameters. (How many learning episodes
should be allowed? How many iterations per episode should be
allowed? How much should a reward be “discounted” as it is
spread back in time? And so on.)

Stumbling Blocks in the Real World
Setting these issues aside for now, let’s look at two major
stumbling blocks that might arise in extrapolating our “training
Rosie” example to reinforcement learning in real-world tasks.
First, there’s the Q-table. In complex real-world tasks—think, for
example, of a robot car learning to drive in a crowded city—it’s
impossible to define a small set of “states” that could be listed in
a table. A single state for a car at a given time would be



something like the entirety of the data from its cameras and
other sensors. This means that a self-driving car effectively faces
an infinite number of possible states. Learning via a Q-table like
the one in the “Rosie” example is out of the question. For this
reason, most modern approaches to reinforcement learning use
a neural network instead of a Q-table. The neural network’s job is
to learn what values should be assigned to actions in a given
state. In particular, the network is given the current state as
input, and its outputs are its estimates of the values of all the
possible actions the agent can take in that state. The hope is that
the network can learn to group related states into general
concepts (It’s safe to drive forward or Stop immediately to avoid
hitting an obstacle).

The second stumbling block is the difficulty, in the real world,
of actually carrying out the learning process over many
episodes, using a real robot. Even our “Rosie” example isn’t
feasible. Imagine yourself initializing a new episode—walking
out on the field to set up the robot and the ball—hundreds of
times, not to mention waiting around for the robot to perform
its hundreds of actions per episode. You just wouldn’t have
enough time. Moreover, you might risk the robot damaging itself
by choosing the wrong action, such as kicking a concrete wall or
stepping forward over a cliff.

Just as I did for Rosie, reinforcement-learning practitioners
almost always deal with this problem by building simulations of
robots and environments and performing all the learning
episodes in the simulation rather than in the real world.
Sometimes this approach works well. Robots have been trained
using simulations to walk, hop, grasp objects, and drive a
remote-control car, among other tasks, and the robots were
able, with various levels of success, to transfer the skills learned
during simulation to the real world.6 However, the more complex
and unpredictable the environment, the less successful are the
attempts to transfer what is learned in simulation to the real



world. Because of these difficulties, it makes sense that to date
the greatest successes of reinforcement learning have been not
in robotics but in domains that can be perfectly simulated on a
computer. In particular, the best-known reinforcement-learning
successes have been in the domain of game playing. Applying
reinforcement learning to games is the topic of the next chapter.
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Game On

Since the earliest days of AI, enthusiasts have been obsessed
with creating programs that can beat humans at games. In the
late 1940s, both Alan Turing and Claude Shannon, two founders
of the computer age, wrote programs to play chess before there
were even computers that could run their code. In the decades
that followed, many a young game fanatic has been driven to
learn to program in order to get computers to play their favorite
game, whether it be checkers, chess, backgammon, Go, poker,
or, more recently, video games.

In 2010, a young British scientist and game enthusiast
named Demis Hassabis, along with two close friends, launched a
company in London called DeepMind Technologies. Hassabis is a
colorful and storied figure in the modern AI world. A chess
prodigy who was winning championships by the age of six, he
started programming video games professionally at fifteen and
founded his own video game company at twenty-two. In addition
to his entrepreneurial activities, he obtained a PhD in cognitive
neuroscience from University College London in order to further
his goal of building brain-inspired AI. Hassabis and his
colleagues founded DeepMind Technologies in order to “tackle
[the] really fundamental questions” about artificial intelligence.1
Perhaps not surprisingly, the DeepMind group saw video games
as the proper venue for tackling those questions. Video games



are, in Hassabis’s view, “like microcosms of the real world, but …
cleaner and more constrained.”2

FIGURE 27: An illustration of Atari’s Breakout game

Whatever your stance on video games, if you are going more
for “clean and constrained” and less for “real world,” you might
consider creating AI programs to play Atari video games from
the 1970s and ’80s. This is exactly what the group at DeepMind
decided to do. Depending on your age and interests, you might
remember some of these classic games, such as Asteroids, Space
Invaders, Pong, and Ms. Pac-Man. Are any of these ringing a bell?
With their uncomplicated graphics and joystick controls, the
games were easy enough for young children to learn but
challenging enough to hold adults’ interest.

Consider the single-player game called Breakout, illustrated
in figure 27. The player uses the joystick to move a “paddle”
(white rectangle at lower right) back and forth. A “ball” (white
circle) can be bounced off the paddle to hit different-colored
rectangular “bricks.” The ball can also bounce off the gray “walls”



at the sides. If the ball hits one of the bricks (patterned
rectangles), the brick disappears, the player gains points, and
the ball bounces back. Bricks in higher layers are worth more
points than those in lower layers. If the ball hits the “ground”
(bottom of the screen), the player loses one of five “lives,” and if
any “lives” remain, a new ball shoots into play. The player’s goal
is to maximize the score over the five lives.

There’s an interesting side note here. Breakout was the result
of Atari’s effort to create a single-player version of its successful
game Pong. The design and implementation of Breakout were
originally assigned in 1975 to a twenty-year-old employee
named Steve Jobs. Yes, that Steve Jobs (later, cofounder of
Apple). Jobs lacked sufficient engineering skills to do a good job
on Breakout, so he enlisted his friend Steve Wozniak, aged
twenty-five (later, the other cofounder of Apple), to help on the
project. Wozniak and Jobs completed the hardware design of
Breakout in four nights, starting work each night after Wozniak
had completed his day job at Hewlett-Packard. Once released,
Breakout, like Pong, was hugely popular among gamers.

If you’re getting nostalgic but neglected to hang on to your
old Atari 2600 game console, you can still find many websites
offering Breakout and other games. In 2013, a group of Canadian
AI researchers released a software platform called the Arcade
Learning Environment that made it easy to test machine-
learning systems on forty-nine of these games.3 This was the
platform used by the DeepMind group in their work on
reinforcement learning.

Deep Q-Learning
The DeepMind group combined reinforcement learning—in
particular Q-learning—with deep neural networks to create a
system that could learn to play Atari video games. The group



called their approach deep Q-learning. To explain how deep Q-
learning works, I’ll use Breakout as a running example, but
DeepMind used the same method on all the Atari games they
tackled. Things will get a bit technical here, so fasten your seat
belt (or skip to the next section).

FIGURE 28: Illustration of a Deep Q-Network (DQN) for Breakout

Recall how we used Q-learning to train Rosie the robo-dog.
In an episode of Q-learning, at each iteration the learning agent
(Rosie) does the following: it figures out its current state, looks
up that state in the Q-table, uses the values in the table to
choose an action, performs that action, possibly receives a
reward, and—the learning step—updates the values in its Q-
table.

DeepMind’s deep Q-learning is exactly the same, except that
a convolutional neural network takes the place of the Q-table.
Following DeepMind, I’ll call this network the Deep Q-Network
(DQN). Figure 28 illustrates a DQN that is similar to (though
simpler than) the one used by DeepMind for learning to play
Breakout. The input to the DQN is the state of the system at a
given time, which here is defined to be the current “frame”—the
pixels of the current screen—plus three prior frames (screen
pixels from three previous time steps). This definition of state



provides the system with a small amount of memory, which
turns out to be useful here. The outputs of the network are the
estimated values for each possible action, given the input state.
The possible actions are the following: move the paddle Left,
move the paddle Right, and No-Op (“no operation,” that is, don’t
move the paddle). The network itself is a ConvNet virtually
identical to the one I described in chapter 4. Instead of the
values in a Q-table, as we saw in the “Rosie” example, in deep Q-
learning it is the weights in this network that are learned.

DeepMind’s system learns to play Breakout over many
episodes. Each episode corresponds to a play of the game, and
each iteration during an episode corresponds to the system
performing a single action. In particular, at each iteration the
system inputs its state to the DQN and chooses an action based
on the DQN’s output values. The system doesn’t always choose
the action with the highest estimated value; as I mentioned
above, reinforcement learning requires a balance between
exploration and exploitation.4 The system performs its chosen
action (for example, moving the paddle some amount to the left)
and possibly receives a reward if the ball happens to hit one of
the bricks. The system then performs a step of learning—that is,
updating the weights in the DQN via back-propagation.

How are the weights updated? This is the crux of the
difference between supervised learning and reinforcement
learning. As you’ll recall from earlier chapters, back-propagation
works by changing a neural network’s weights so as to reduce
the error in the network’s outputs. With supervised learning,
measuring this error is straightforward. Remember our
hypothetical ConvNet back in chapter 4 whose goal was to learn
to classify photos as “dog” or “cat”? If an input training photo
pictured a dog but the “dog” output confidence was only 20
percent, then the error for that output would be 100% − 20% =
80%; that is, ideally, the output should have been 80 points



higher. The network could calculate the error because it had a
label provided by a human.

However, in reinforcement learning we have no labels. A
given frame from the game doesn’t come labeled with the action
that should be taken. How then do we assign an error to an
output in this case?

Here’s the answer. Recall that if you are the learning agent,
the value of an action in the current state is your estimate of how
much reward you will receive by the end of the episode, if you
choose this action (and continue choosing high-value actions).
This estimate should be better the closer you get to the end of
the episode, when you can tally up the actual rewards you
received! The trick is to assume that the network’s outputs at the
current iteration are closer to being correct than its outputs at
the previous iteration. Then learning consists in adjusting the
network weights (via back-propagation) so as to minimize the
difference between the current and the previous iteration’s
outputs. Richard Sutton, one of the originators of this method,
calls this “learning a guess from a guess.”5 I’ll amend that to
“learning a guess from a better guess.”

In short, instead of learning to match its outputs to human-
given labels, the network learns to make its outputs consistent
from one iteration to the next, assuming that later iterations give
better estimates of value than earlier iterations. This learning
method is called temporal difference learning.

To recap, here’s how deep Q-learning works for the game of
Breakout (and all the other Atari games). The system gives its
current state as input to the Deep Q-Network. The Deep Q-
Network outputs a value for each possible action. The system
chooses and performs an action, resulting in a new state. Now
the learning step takes place: the system inputs its new state to
the network, which outputs a new set of values for each action.
The difference between the new set of values and the previous
set of values is considered the “error” of the network; this error is



used by back-propagation to change the weights of the network.
These steps are repeated over many episodes (plays of the
game). Just to be clear, everything here—the Deep Q-Network,
the virtual “joystick,” and the game itself—is software running in
a computer.

This is essentially the algorithm developed by DeepMind’s
researchers, although they used some tricks to improve it and
speed it up.6 At first, before much learning has happened, the
network’s outputs are quite random, and the system’s game
playing looks quite random as well. But gradually, as the
network learns weights that improve its outputs, the system’s
playing ability improves, in many cases quite dramatically.

The $650 Million Agent
The DeepMind group applied their deep Q-learning method to
the forty-nine different Atari games in the Arcade Learning
Environment. While DeepMind’s programmers used the same
network architecture and hyperparameter settings for each
game, their system learned each game from scratch; that is, the
system’s knowledge (the network weights) learned for one game
was not transferred when the system started learning to play the
next game. Each game required training for thousands of
episodes, but this could be done relatively quickly on the
company’s advanced computer hardware.



FIGURE 29: DeepMind’s Breakout player discovered the strategy of tunneling
through the bricks, which allowed it to quickly destroy high-value top bricks

by bouncing off the “ceiling.”

After a Deep Q-Network for each game was trained,
DeepMind compared the machine’s level of play with that of a
human “professional games tester,” who was allowed two hours
of practice playing each game before being evaluated. Sound
like a fun job? Only if you like being humiliated by a computer!
DeepMind’s deep Q-learning programs turned out to be better
players than the human tester on more than half the games.
And on half of those games, the programs were more than twice
as good as the human. And on half of those games, the
programs were more than five times better. One stunning
example was on Breakout, where the DQN program scored on
average more than ten times the human’s average score.

What, exactly, did these superhuman programs learn to do?
Upon investigation, DeepMind found that their programs had
discovered some very clever strategies. For example, the trained



Breakout program had discovered a devious trick, illustrated in
figure 29. The program learned that if the ball was able to knock
out bricks so as to build a narrow tunnel through the edge of the
brick layer, then the ball would bounce back and forth between
the “ceiling” and the top of the brick layer, knocking out high-
value top bricks very quickly without the player having to move
the paddle at all.

DeepMind first presented this work in 2013 at an
international machine-learning conference.7 The audience was
dazzled. Less than a year later, Google announced that it was
acquiring DeepMind for £440 million (about $650 million at the
time), presumably because of these results. Yes, reinforcement
learning occasionally leads to big rewards.

With a lot of money in their pockets and the resources of
Google behind them, DeepMind—now called Google DeepMind
—took on a bigger challenge, one that had in fact long been
considered one of AI’s “grand challenges”: creating a program
that learns to play the game Go better than any human.
DeepMind’s program AlphaGo builds on a long history of AI in
board games. Let’s start with a brief survey of that history, which
will help in explaining how AlphaGo works and why it is so
significant.

Checkers and Chess
In 1949, the engineer Arthur Samuel joined IBM’s laboratory in
Poughkeepsie, New York, and immediately set about
programming an early version of IBM’s 701 computer to play
checkers. If you yourself have any computer programming
experience, you will appreciate the challenge he faced: as noted
by one historian, “Samuel was the first person to do any serious
programming on the 701 and as such had no system utilities
[that is, essentially no operating system!] to call on. In particular



he had no assembler and had to write everything using the op
codes and addresses.”8 To translate for my nonprogrammer
readers, this is something like building a house using only a
handsaw and a hammer. Samuel’s checkers-playing program
was among the earliest machine-learning programs; indeed, it
was Samuel who coined the term machine learning.

FIGURE 30: Part of a game tree for checkers. For simplicity, this figure shows only
three possible moves from each board position. The white arrows point from

a moved piece’s previous square to its current square.

Samuel’s checkers player was based on the method of
searching a game tree, which is the basis of all programs for
playing board games to this day (including AlphaGo, which I’ll
describe below). Figure 30 illustrates part of a game tree for
checkers. The “root” of the tree (by convention drawn at the top,
unlike the root of a natural tree) shows the initial checkerboard,
before either player has moved. The “branches” from the root
lead to all possible moves for the first player (here, Black). There



are seven possible moves (for simplicity, the figure shows only
three of these). For each of those seven moves for Black, there
are seven possible response moves for White (not all shown in
the figure), and so on. Each of the boards in figure 30, showing a
possible arrangement of pieces, is called a board position.

Imagine yourself playing a game of checkers. At each turn,
you might construct a small part of this tree in your mind. You
might say to yourself, “If I make this move, then my opponent
could make that move, in which case I could make that move,
which will set me up for a jump.” Most people, including the best
players, consider only a few possible moves, looking ahead only
a few steps before choosing which move to make. A fast
computer, on the other hand, has the potential to perform this
kind of look-ahead on a much larger scale. What’s stopping the
computer from looking at every possible move and seeing which
sequence of moves most quickly leads to a win? The problem is
the same kind of exponential increase we saw back in chapter 3
(remember the king, the sage, and the grains of rice?). The
average game of checkers has about fifty moves, which means
that the game tree in figure 30 might extend down for fifty
levels. At each level, there are on average six or seven branches
from each possible board position. This means that the total
number of board positions in the tree could be more than six
raised to the fiftieth power—a ridiculously huge number. A
hypothetical computer that could look at a trillion board
positions per second would take more than 1019 years to
consider all the board positions in a single game tree. (As is
often done, we can compare this number with the age of the
universe, which is merely on the order of 1010 years.) Clearly a
complete search of the game tree is not feasible.

Fortunately, it’s possible for computers to play well without
doing this kind of exhaustive search. On each of its turns,
Samuel’s checkers-playing program created (in the computer’s
memory) a small part of a game tree like the one in figure 30.



The root of the tree was the player’s current board position, and
the program, using its built-in knowledge of the rules of
checkers, generated all the legal moves it could make from this
current board position. It then generated all the legal moves that
the opponent could make from each of the resulting positions,
and so on, up to four or five turns (or “plies”) of look-ahead.9

The program then evaluated board positions that appeared
at the end of the look-ahead process; in figure 30, these would
be the board positions in the bottom row in the partial tree.
Evaluating a board position means assigning it a numerical value
that estimates how likely it is to lead to a win for the program.
Samuel’s program used an evaluation function that gave points,
thirty-eight in total, for various features of the board, such as
Black’s advantage in total number of pieces, Black’s number of
kings, and how many of Black’s pieces were close to being
kinged. These specific features were chosen by Samuel using his
knowledge of checkers. Once each of the bottom-row board
positions was thus evaluated, the program employed a classic
algorithm, called minimax, which used these values—from the
end of the look-ahead process—in order to rate the program’s
immediate possible moves from its current board position. The
program then chose the highest-rated move.

The intuition here is that the evaluation function will be more
accurate when applied to board positions further along in the
game; thus the program’s strategy is to first look at all possible
move sequences a few steps into the future and then apply the
evaluation function to the resulting board positions. The
evaluations are then propagated back up the tree by minimax,
which produces a rating of all the possible immediate moves
from the current board position.10

What the program learned was which features of the board
should be included in the evaluation function at a given turn, as
well as how to weight these different features when summing
their points. Samuel experimented with several methods for



learning in his system. In the most interesting version, the
system learned while playing itself! The method for learning was
somewhat complicated, and I won’t detail it here, but it had
some aspects that foreshadowed modern reinforcement
learning.11

In the end, Samuel’s checkers player impressively rose to the
level of a “better-than-average player,” though by no means a
champion. It was characterized by some amateur players as
“tricky but beatable.”12 But notably, the program was a publicity
windfall for IBM: the day after Samuel demonstrated it on
national television in 1956, IBM’s stock price rose by fifteen
points. This was the first of several times IBM saw its stock price
increase after a demonstration of a game-playing program
beating humans; as a more recent example, IBM’s stock price
similarly rose after the widely viewed TV broadcasts in which its
Watson program won in the game show Jeopardy!

While Samuel’s checkers player was an important milestone
in AI history, I made this historical digression primarily to
introduce three all-important concepts that it illustrates: the
game tree, the evaluation function, and learning by self-play.

Deep Blue
Although Samuel’s “tricky but beatable” checkers program was
remarkable, especially for its time, it hardly challenged people’s
idea of themselves as uniquely intelligent. Even if a machine
could win against human checkers champions (as one finally did
in 199413), mastering the game of checkers was never seen as a
proxy for general intelligence. Chess is a different story. In the
words of DeepMind’s Demis Hassabis, “For decades, leading
computer scientists believed that, given the traditional status of
chess as an exemplary demonstration of human intellect, a
competent computer chess player would soon also surpass all



other human abilities.”14 Many people, including the early
pioneers of AI Allen Newell and Herbert Simon, professed this
exalted view of chess; in 1958 Newell and Simon wrote, “If one
could devise a successful chess machine, one would seem to
have penetrated to the core of human intellectual endeavor.”15

Chess is significantly more complex than checkers. For
example, I said above that in checkers there are, on average, six
or seven possible moves from any given board position. In
contrast, chess has on average thirty-five moves from any given
board position. This makes the chess game tree enormously
larger than that of checkers. Over the decades, chess-playing
programs kept improving, in lockstep with improvements in the
speed of computer hardware. In 1997, IBM had its second big
game-playing triumph with Deep Blue, a chess-playing program
that beat the world champion Garry Kasparov in a widely
broadcast multigame match.

Deep Blue used much the same method as Samuel’s
checkers player: at a given turn, it created a partial game tree
using the current board position as the root; it applied its
evaluation function to the furthest layer in the tree and then
used the minimax algorithm to propagate the values up the tree
in order to determine which move it should make. The major
differences between Samuel’s program and Deep Blue were
Deep Blue’s deeper look-ahead in its game tree, its more
complex (chess-specific) evaluation function, hand-programmed
chess knowledge, and specialized parallel hardware to make it
run very fast. Furthermore, unlike Samuel’s checkers-playing
program, Deep Blue did not use machine learning in any central
way.

Like Samuel’s checkers player before it, Deep Blue’s defeat of
Kasparov spurred a significant increase in IBM’s stock price.16

This defeat also generated considerable consternation in the
media about the implications for superhuman intelligence as
well as doubts about whether humans would still be motivated



to play chess. But in the decades since Deep Blue, humanity has
adapted. As Claude Shannon wrote presciently in 1950, a
machine that can surpass humans at chess “will force us either
to admit the possibility of mechanized thinking or to further
restrict our concept of thinking.”17 The latter happened.
Superhuman chess playing is now seen as something that
doesn’t require general intelligence. Deep Blue isn’t intelligent in
any sense we mean today. It can’t do anything but play chess,
and it doesn’t have any conception of what “playing a game” or
“winning” means to humans. (I once heard a speaker say, “Deep
Blue may have beat Kasparov, but it didn’t get any joy out of it.”)
Moreover, chess has survived—even prospered—as a
challenging human activity. Nowadays, computer-chess
programs are used by human players as a kind of training aid, in
the way a baseball player might practice using a pitching
machine. Is this a result of our evolving notion of intelligence,
which advances in AI help to clarify? Or is it another example of
John McCarthy’s maxim: “As soon as it works, no one calls it AI
anymore”?18

The Grand Challenge of Go
The game of Go has been around for more than two thousand
years and is considered among the most difficult of all board
games. If you’re not a Go player, don’t worry; none of my
discussion here will require any prior knowledge of the game.
But it’s useful to know that the game has serious status,
especially in East Asia, where it is extremely popular. “Go is a
pastime beloved by emperors and generals, intellectuals and
child prodigies,” writes the scholar and journalist Alan Levinovitz,
who goes on to quote the South Korean Go champion Lee Sedol:
“There is chess in the western world, but Go is incomparably
more subtle and intellectual.”19



Go is a game that has fairly simple rules but produces what
you might call emergent complexity. At each turn, a player
places a piece of his or her color (black or white) on a nineteen-
by-nineteen-square board, following rules for where pieces may
be placed and how to capture one’s opponent’s pieces. Unlike
chess, with its hierarchy of pawns, bishops, queens, and so on,
pieces in Go (“stones”) are all equal. It’s the configuration of
stones on the board that a player must quickly analyze to decide
on a move.

Creating a program to play Go well has been a focus of AI
since the field’s early days. However, Go’s complexity made this
task remarkably hard. In 1997, the same year Deep Blue beat
Kasparov, the best Go programs could still be easily defeated by
average players. Deep Blue, you’ll recall, was able to do a
significant amount of look-ahead from any board position and
then use its evaluation function to assign values to future board
positions, where each value predicted whether a particular
board position would lead to a win. Go programs are not able to
use this strategy for two reasons. First, the size of a look-ahead
tree in Go is dramatically larger than that in chess. Whereas a
chess player must choose from on average 35 possible moves
from a given board position, a Go player has on average 250
such possibilities. Even with special-purpose hardware, a Deep
Blue–style brute-force search of the Go game tree is just not
feasible. Second, no one has succeeded in creating a good
evaluation function for Go board positions. That is, no one has
been able to construct a successful formula that examines a
board position in Go and predicts who is going to win. The best
(human) Go players rely on their pattern-recognition skills and
their ineffable “intuition.”

AI researchers haven’t yet figured out how to encode
intuition into an evaluation function. This is why, in 1997, the
same year that Deep Blue beat Kasparov, the journalist George
Johnson wrote in The New York Times, “When or if a computer



defeats a human Go champion, it will be a sign that artificial
intelligence is truly beginning to become as good as the real
thing.”20 This may sound familiar—just like what people used to
say about chess! Johnson quoted one Go enthusiast’s prediction:
“It may be a hundred years before a computer beats humans at
Go—maybe even longer.” A mere twenty years later, AlphaGo,
which learned to play Go via deep Q-learning, beat Lee Sedol in a
five-game match.

AlphaGo Versus Lee Sedol
Before I explain how AlphaGo works, let’s first commemorate its
spectacular wins against Lee Sedol, one of the world’s best Go
players. Even after watching AlphaGo defeat the then European
Go champion Fan Hui half a year earlier, Lee remained confident
that he would prevail: “I think [AlphaGo’s] level doesn’t match
mine.… Of course, there would have been many updates in the
last four or five months, but that isn’t enough time to challenge
me.”21

Perhaps you were one of the more than two hundred million
people who watched some part of the AlphaGo-Lee match online
in March 2016. I’m certain that this ranks as the largest audience
by far for any Go match in the game’s twenty-five-hundred-year
history. After the first game, you might have shared Lee’s
reaction at his loss to the program: “I am in shock, I admit that.…
I didn’t think AlphaGo would play the game in such a perfect
manner.”22

AlphaGo’s “perfect” play included many moves that evoked
surprise and admiration among the match’s human
commentators. But partway through game 2, AlphaGo made a
single move that gobsmacked even the most advanced Go
experts. As Wired reported,



At first, Fan Hui [the aforementioned European Go champion] thought
the move was rather odd. But then he saw its beauty. “It’s not a
human move. I’ve never seen a human play this move,” he says. “So
beautiful.” It’s a word he keeps repeating. Beautiful. Beautiful.
Beautiful.… “That’s a very surprising move,” said one of the match’s
English language commentators, who is himself a very talented Go
player. Then the other chuckled and said: “I thought it was a mistake.”
But perhaps no one was more surprised than Lee Sedol, who stood up
and left the match room. “He had to go wash his face or something‚
just to recover,” said the first commentator.23

Of this same move, The Economist noted, “Intriguingly, moves like
these are sometimes made by human Go masters. They are
known in Japanese as kami no itte (‘the hand of God,’ or ‘divine
moves’).”24

AlphaGo won that game, and the next. But in game 4, Lee
had his own kami no itte moment, one that captures the intricacy
of the game and the intuitive power of the top players. Lee’s
move took the commentators by surprise, but they immediately
recognized it as potentially lethal for Lee’s opponent. One writer
noted, “AlphaGo, however, didn’t seem to realize what was
happening. This wasn’t something it had encountered  … in the
millions and millions of games it had played with itself. At the
post-match press conference Sedol was asked what he had been
thinking when he played it. It was, he said, the only move he had
been able to see.”25

AlphaGo lost game 4 but came back to win game 5 and thus
the match. In the popular media, it was Deep Blue versus
Kasparov all over again, with an endless supply of think pieces
on what AlphaGo’s triumph meant for the future of humanity.
But this was even more significant than Deep Blue’s win: AI had
surmounted an even greater challenge than chess and had done
so in a much more impressive fashion. Unlike Deep Blue,
AlphaGo acquired its abilities by reinforcement learning via self-
play.



Demis Hassabis noted that “the thing that separates out top
Go players [is] their intuition” and that “what we’ve done with
AlphaGo is to introduce with neural networks this aspect of
intuition, if you want to call it that.”26

How AlphaGo Works
There have been several different versions of AlphaGo, so to
keep them straight, DeepMind started naming them after the
human Go champions the programs had defeated—AlphaGo Fan
and AlphaGo Lee—which to me evoked the image of the skulls of
vanquished enemies in the collection of a digital Viking. Not
what DeepMind intended, I’m sure. In any case, AlphaGo Fan and
AlphaGo Lee both used an intricate mix of deep Q-learning,
“Monte Carlo tree search,” supervised learning, and specialized
Go knowledge. But a year after the Lee Sedol match, DeepMind
developed a version of the program that was both simpler than
and superior to the previous versions. This newer version is
called AlphaGo Zero because, unlike its predecessor, it started
off with “zero” knowledge of Go besides the rules.27 In a hundred
games of AlphaGo Lee versus AlphaGo Zero, the latter won every
single game. Moreover, DeepMind applied the same methods
(though with different networks and different built-in game
rules) to learn to play both chess and shogi (also known as
Japanese chess).28 The authors called the collection of these
methods AlphaZero. In this section, I’ll describe how AlphaGo
Zero worked, but for conciseness I’ll simply refer to this version
as AlphaGo.



FIGURE 31: An illustration of Monte Carlo tree search

The word intuition has an aura of mystery, but AlphaGo’s
intuition (if you want to call it that) arises from its combination of
deep Q-learning with a clever method called “Monte Carlo tree
search.” Let’s take a moment to unpack that cumbersome name.
First, the “Monte Carlo” part. Monte Carlo is, of course, the most
glamorous part of the tiny Principality of Monaco, on the French
Riviera, famous for its jet-setter casinos, car racing, and frequent
appearance in James Bond movies. But in science and
mathematics, “Monte Carlo” refers to a family of computer
algorithms, the so-called Monte Carlo method, which was first
used during the Manhattan Project to help design the atomic
bomb. The name comes from the idea that a degree of
randomness—like that of the iconic spinning roulette wheel in
the Monte Carlo Casino—can be used by a computer to solve
difficult mathematical problems.

Monte Carlo tree search is a version of the Monte Carlo
method specifically devised for computer game-playing
programs. Similar to the way Deep Blue’s evaluation function
worked, Monte Carlo tree search is used to assign a score to
each possible move from a given board position. However, as I
explained above, using extensive look-ahead in the game tree is
not feasible for Go, and no one has been able to come up with a



good evaluation function for board positions in Go. Monte Carlo
tree search works differently.

Figure 31 illustrates Monte Carlo tree search. First, look at
figure 31A. The black circle represents the current board position
—that is, the configuration of pieces on the board at the current
turn. Assume our Go-playing program is playing Black, and it is
Black’s move. Let’s assume for simplicity that there are three
possible moves for Black, represented by the three arrows.
Which move should Black choose?

If Black had enough time, it could do a “full search” of the
game tree: look ahead at all the possible sequences of moves
that could be played and choose a move that gives the best
chance of leading to a win for Black. But doing this exhaustive
look-ahead isn’t possible; as I mentioned earlier, even all the
time since the beginning of the universe isn’t nearly enough to
do a full tree search in Go. With Monte Carlo tree search, Black
looks ahead at only a minuscule fraction of the possible
sequences that could arise from each move, counts how many
wins and losses those hypothetical sequences lead to, and uses
those counts to give a score to each of its possible moves. The
roulette-wheel-inspired randomness is used in deciding how to
do the look-ahead.

More specifically, in order to choose a move from its current
position, Black “imagines” (that is, simulates) several possible
ways the game could play out, as illustrated in figure 31B–D. In
each of these simulations, Black starts at its current position,
randomly chooses one of its possible moves, then (from the new
board position) randomly chooses a move for its opponent
(White), and so on, continuing until the simulated game ends up
in a win or loss for Black. Such a simulation, starting from a
given board position, is called a roll-out from that position.

In the figure, you can see that in the three roll-outs, Black
won once and lost twice. Black can now assign a score to each
possible move from its current board position (figure 31E). Move



1 (leftmost arrow) participated in two roll-outs, one of which
ended in a win, so that move’s score is 1 out of 2. Move 3
(rightmost arrow) participated in one roll-out, which ended in a
loss, so its score is 0 out of 1. The center move was not tried at
all, so its score is set to 0. Moreover, the program keeps similar
statistics on all the intermediate moves that participated in the
roll-outs. Once this round of Monte Carlo tree search has
finished, the program can use its updated scores to decide which
of its possible moves seems the most promising—here, move 1.
The program can then make that move in the actual game.

When I said before that during a roll-out the program
chooses moves for itself and its opponents at random, what
actually happens is that the program chooses moves
probabilistically based on any scores that those moves might
have from previous rounds of Monte Carlo tree search. When
each roll-out finishes with a win or loss, the algorithm updates all
the scores of moves it made during that game to reflect the win
or loss.

At first, the program’s choice of moves from a given board
position is quite random (the program is doing the equivalent of
spinning a roulette wheel to choose a move), but as the program
performs additional roll-outs, generating additional statistics, it
is increasingly biased to choose those moves that in past roll-
outs led to the most wins.

In this way, Monte Carlo tree search doesn’t have to guess
from just looking at a board position which move is most likely to
lead to a win; it uses its roll-outs to collect statistics on how many
times a given move actually leads to a win or loss. The more roll-
outs the algorithm runs, the better its statistics. As before, the
program needs to balance exploitation (choosing the highest-
scoring moves during a roll-out) with exploration (sometimes
choosing lower-scoring moves for which the program doesn’t yet
have much statistics). In figure 31, I showed three roll-outs;



AlphaGo’s Monte Carlo tree search performed close to two
thousand roll-outs per turn.

The computer scientists at DeepMind didn’t invent Monte
Carlo tree search. It was first proposed in the context of game
trees in 2006, and it resulted in a very big improvement in the
ability of computer Go programs. But these programs still
couldn’t beat the best humans. One problem was that
generating sufficient statistics from roll-outs can take a lot of
time, especially in Go, with its vast number of possible moves.
The DeepMind group realized that they could improve their
system by complementing Monte Carlo tree search with a deep
convolutional neural network. Given the current board position
as input, AlphaGo uses a trained deep convolutional neural
network to assign a rough value to all possible moves from the
current position. Then Monte Carlo tree search uses those values
to kick-start its search: rather than initially choosing moves at
random, Monte Carlo tree search uses values output by the
ConvNet as an indicator of which initial moves should be
preferred. Imagine that you are AlphaGo staring at a board
position: before you start the Monte Carlo process of performing
roll-outs from that position, the ConvNet is whispering in your
ear which of the possible moves from your current position are
probably the best ones.

Conversely, the results of Monte Carlo tree search feed back
to train the ConvNet. Imagine yourself as AlphaGo after a Monte
Carlo tree search. The results of your search are new
probabilities assigned to all your possible moves, based on how
many times those moves led to wins or losses during the roll-
outs you performed. These new probabilities are now used to
correct your ConvNet’s output, via back-propagation. You and
your opponent then choose moves, as a result of which you have
a new board position, and the process continues. In principle,
the convolutional neural network will learn to recognize
patterns, just as Go masters do. Eventually, the ConvNet will play



the role of the program’s “intuition,” which is further improved by
Monte Carlo tree search.

Like its ancestor, Samuel’s checkers player, AlphaGo learns
by playing against itself over many games (about five million).
During its training, the convolutional neural network’s weights
are updated after each move based on the difference between
the network’s output values and the improved values after
Monte Carlo tree search is run. Then, when it’s time for AlphaGo
to play, say, a human like Lee Sedol, the trained ConvNet is used
at each turn to generate values to help Monte Carlo tree search
get started.

With its AlphaGo project, DeepMind demonstrated that one
of AI’s longtime grand challenges could be conquered by an
inventive combination of reinforcement learning, convolutional
neural networks, and Monte Carlo tree search (and adding
powerful modern computing hardware to the mix). As a result,
AlphaGo has attained a well-deserved place in the AI pantheon.
But what’s next? Will this potent combination of methods
generalize beyond the world of game playing? This is the
question I discuss in the next chapter.
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Beyond Games

Over the past decade, reinforcement learning has transformed
from a relatively obscure branch of AI to one of the field’s most
exciting (and heavily funded) approaches. The resurgence of
reinforcement learning, especially in the public eye, is largely
due to the DeepMind projects I described in the previous
chapter. DeepMind’s results on Atari games and on Go are
indeed remarkable and important, and they deserve their
accolades.

However, developing superhuman game-playing programs
is, for most AI researchers, not an end in and of itself. Let’s step
back and ask about the implications of these successes for
broader progress in AI. Demis Hassabis has something to say
about this:

Games are just our development platform.… It’s the fastest way to
develop these AI algorithms and test them, but ultimately we want to
use them so they apply to real-world problems and have a huge
impact on things like healthcare and science. The whole point is that
it’s general AI—it’s learning how to do things [based on] its own
experience and its own data.1

Let’s dig into this a bit. How general is this AI, really? How
applicable to the real world, beyond games? To what extent are



these systems actually learning “on their own”? And what is it,
exactly, that they learn?

Generality and “Transfer Learning”
When I was searching online for articles about AlphaGo, the web
offered me this catchy headline: “DeepMind’s AlphaGo Mastered
Chess in Its Spare Time.”2 This claim is wrong and misleading,
and it’s important to understand why. AlphaGo (in all its
versions) can’t play anything but Go. Even the most general
version, AlphaZero, is not a single system that learned to play
Go, chess, and shogi. Each game has its own separate
convolutional neural network that must be trained from scratch
for its particular game. Unlike humans, none of these programs
can “transfer” anything it has learned about one game to help it
learn a different game.

The same is true for the various Atari game-playing
programs: each learns its own network weights from scratch. It’s
as if you learned to play Pong, but then in order to learn to play
Breakout, you’d have to completely forget everything you learned
about playing Pong and start from square one.

A hopeful phrase in the machine-learning community is
“transfer learning,” which refers to the ability of a program to
transfer what it has learned about one task to help it perform a
different, related task. For humans, transfer learning is
automatic. After I learned to play Ping-Pong, I was able to
transfer some of those skills to help me in learning tennis and
badminton. Knowing how to play checkers helped me in learning
how to play chess. When I was a toddler, it took me a while to
learn how to twist the doorknob in my room, but once I had
mastered that skill, my abilities quickly generalized to most any
kind of doorknob.



Humans exhibit this kind of transfer from one task to
another seemingly effortlessly; our ability to generalize what we
learn is a core part of what it means for us to think. Thus, in
human-speak, we might say that another term for transfer
learning is, well, learning.

In stark contrast with humans, most “learning” in current-day
AI is not transferable between related tasks. In this regard, the
field is still far from what Hassabis calls “general AI.” While the
topic of transfer learning is one of the most active areas of
research for machine-learning practitioners, progress on this
front is still nascent.3

“Without Human Examples or Guidance”
Unlike supervised learning, reinforcement learning holds the
promise of programs that can truly learn on their own, simply by
performing actions in their “environment” and observing the
outcome. DeepMind’s most important claim about its results,
especially on AlphaGo, is that the work has delivered on that
promise: “Our results comprehensively demonstrate that a pure
reinforcement learning approach is fully feasible, even in the
most challenging of domains: it is possible to train to
superhuman level, without human examples or guidance, given
no knowledge of the domain beyond basic rules.”4

We have the claim. Now let’s look at the caveats. AlphaGo (or
more precisely, the AlphaGo Zero version) indeed didn’t use any
human examples in its learning, but human “guidance” is
another story. A few aspects of human guidance that were
critical to its success include the specific architecture of its
convolutional neural network, the use of Monte Carlo tree
search, and the setting of the many hyperparameters that both
of these entail. As the psychologist and AI researcher Gary
Marcus has pointed out, none of these crucial aspects of



AlphaGo were “learned from the data, by pure reinforcement
learning. Rather, [they were] built in innately  … by DeepMind’s
programmers.”5 DeepMind’s Atari game-playing programs were
actually better examples of “learning without human guidance”
than AlphaGo, because unlike the latter they were not provided
with the rules of their game (for example, that the goal in
Breakout is to destroy bricks) or even a concept of the “objects”
relevant to the game (for example, paddle or ball) but learned
exclusively from the screen pixels.

The Most Challenging of Domains
One additional aspect of DeepMind’s statement needs to be
explored: “even in the most challenging of domains.” How can
we assess how challenging a domain is for AI? As we’ve seen,
many things we humans consider quite easy (for example,
describing the contents of a photo) are extremely challenging for
computers. Conversely, many things we humans would find
terrifically challenging (for example, correctly multiplying two
fifty-digit numbers), computers can do in a split second with a
one-line program.

One way to assess the challenge of a domain for computers
is to see how well very simple algorithms perform on it. In 2018,
a group of researchers at Uber AI Labs found that some
relatively simple algorithms nearly matched (and sometimes
outperformed) DeepMind’s deep Q-learning method on several
Atari video games. The most surprising good performer was
“random search”: instead of training a Deep Q-Network by
reinforcement learning over many episodes, one can simply try
out many different convolutional neural networks with randomly
chosen weights.6 That is, there is no learning whatsoever, except
via random trial and error.



You’d think that a network with random weights would
perform abominably on an Atari video game. Indeed, most such
networks are terrible players. But the Uber researchers kept
trying new random-weight networks, and eventually (in less time
than it took to train a Deep Q-Network) they found networks that
performed nearly as well as or even better than networks
trained by deep Q-learning on five out of the thirteen games
they tested. Another relatively simple algorithm, a so-called
genetic algorithm,7 outperformed deep Q-learning on seven out
of thirteen games. It’s hard to know what to say about these
results, except that it’s possible that the Atari game domain is
not as challenging for AI as people originally thought.

I haven’t heard of anyone trying a similar random search for
network weights for Go. I’d be very surprised if that worked at
all. Given the long history of attempts to build computer Go
players, I’m convinced that Go counts as a genuinely challenging
domain for AI. However, as Gary Marcus pointed out, there are
many games humans play that are even more challenging for AI
than Go. One striking example Marcus gives is charades,8 which,
if you think about it, requires sophisticated visual, linguistic, and
social understanding far beyond the abilities of any current AI
system. If you could build a robot that could play charades as
well as, say, a six-year-old child, then I think you could safely say
that you had conquered several of the “most challenging of
domains” for AI.

What Did These Systems Learn?
Like other applications of deep learning, it’s hard to interpret
what the neural networks used in these game-playing systems
have actually learned. In reading the sections above, you might
have noticed some subtle anthropomorphism creeping into my



descriptions: for example, I said, “DeepMind’s Breakout player
discovered the strategy of tunneling through the bricks.”

It’s dangerously easy, for me as much as anyone, to slip into
this kind of language when talking about the behavior of AI
systems. However, our language often carries unconscious
assumptions that may not hold for these programs. Did
DeepMind’s Breakout player actually discover the concept of
tunneling? Gary Marcus reminds us that we need to be careful
here:

The system has learned no such thing; it doesn’t really understand
what a tunnel, or what a wall is; it has just learned specific
contingencies for particular scenarios. Transfer tests—in which the
deep reinforcement learning system is confronted with scenarios that
differ in minor ways from the ones on which the system was trained—
show that deep reinforcement learning’s solutions are often extremely
superficial.9

Marcus is referring to a few studies that tried to probe how
well deep Q-learning systems can transfer what they learned,
even to very small variations of the same game. For example,
one group of researchers studied a system similar to DeepMind’s
Breakout player. They found that once the player is trained to
“superhuman” level, if the paddle’s position on the screen is
shifted up by a few pixels, the system’s performance plummets.10

This hints that the system has not even learned the basic
concept of paddle. Another group showed that for a deep Q-
learning system trained on the game Pong, if the screen’s
background color is changed, the system’s performance
decreases significantly.11 Moreover, in each case the system
needs many episodes of retraining to adapt to the variation.

These are just two examples of deep Q-learning’s inability to
generalize, which contrasts strikingly with human intelligence. I
don’t know of any study that probed the concept of tunneling in
DeepMind’s Breakout player, but I’d guess that the system
couldn’t generalize to, say, tunneling down or sideways, without



considerable retraining. As Marcus notes, while we humans
attribute to the program a certain understanding of what we
consider basic concepts (for example, wall, ceiling, paddle, ball,
tunneling), the program actually has no such concepts:

These demonstrations make clear that it is misleading to credit deep
reinforcement learning with inducing concepts like wall or paddle;
rather, such remarks are what comparative (animal) psychology
sometimes call overattributions. It’s not that the Atari system
genuinely learned a concept of wall that was robust but rather the
system superficially approximated breaking through walls within a
narrow set of highly trained circumstances.12

Similarly, while AlphaGo exhibited miraculous “intuition” in
playing Go, the system doesn’t have any mechanisms, as far as I
can tell, that would allow it to generalize its Go-playing abilities,
even to, say, a smaller or differently shaped Go board, without
restructuring and retraining its Deep Q-Network.

In short, while these deep Q-learning systems have achieved
superhuman performance in some narrow domains, and even
exhibit what resembles “intuition” in these domains, they are
lacking something absolutely fundamental to human
intelligence. Whether it is called abstraction, domain
generalization, or transfer learning, imbuing systems with this
ability is still one of AI’s most important open problems.

There’s another reason to suspect that these systems are not
learning humanlike concepts or understanding their domains in
the way humans do: like supervised-learning systems, these
deep Q-learning systems are vulnerable to adversarial examples
of the kind I described in chapter 6. For example, one research
group showed that it’s possible to make specific minuscule
changes to the pixels in an Atari game-playing program’s input—
changes that are imperceptible to humans but that significantly
damage the program’s ability to play the game.



How Intelligent Is AlphaGo?
Here’s something we must keep in mind when thinking about
games like chess and Go and their relation to human
intelligence. Consider the reasons many parents encourage their
kids to join the school chess club (or in some places the Go club)
and would much rather see their kids playing chess (or Go) than
sitting at home watching TV or playing video games (sorry,
Atari). It’s because people believe that games like chess or Go
teach children (or anyone) how to think better: how to think
logically, reason abstractly, and plan strategically. These are all
capabilities that will carry over into the rest of one’s life, general
abilities that a person will be able to use in all endeavors.

But AlphaGo, in spite of the millions of games it has played
during its training, has not learned to “think” better about
anything except the game of Go. In fact, it has no ability to think
about anything, to reason about anything, to make plans about
anything, except Go. As far as I know, none of the abilities it has
learned are general in any way; none can be transferred to any
other task. AlphaGo is the ultimate idiot savant.

It’s certainly true that the deep Q-learning method used in
AlphaGo can be used to learn other tasks, but the system itself
would have to be wholly retrained; it would have to start
essentially from scratch in learning a new skill.

This brings us back to the “easy things are hard” paradox of
AI. AlphaGo was a great achievement for AI; learning largely via
self-play, it was able to definitively defeat one of the world’s best
human players in a game that is considered a paragon of
intellectual prowess. But AlphaGo does not exhibit human-level
intelligence as we generally define it, or even arguably any real
intelligence. For humans, a crucial part of intelligence is, rather
than being able to learn any particular skill, being able to learn to
think and to then apply our thinking flexibly to whatever
situations or challenges we encounter. This is the true skill we



want our children to learn when they play chess or Go. It may
sound strange to say, but in this way the lowliest kindergartner
in the school chess club is smarter than AlphaGo.

From Games to the Real World
Finally, let’s consider Demis Hassabis’s statement that the
ultimate goal of these demonstrations on games is to “use them
so they apply to real-world problems and have a huge impact on
things like healthcare and science.” I think it’s very possible that
DeepMind’s work on reinforcement learning may eventually have
the kinds of impacts Hassabis is aiming for. But there’s a long
way to go from games to the real world.

The need for transfer learning is one obstacle. But there are
additional reasons that it will be difficult to extend reinforcement
learning’s success in games to the real world. Games such as
Breakout and Go are ideally suited for reinforcement learning
because they have clear rules, straightforward reward functions
(for example, rewards for points gained or for winning), and
relatively few possible actions (moves). Moreover, the players
have access to “perfect information”: all the components of the
game are visible at all times to the players; there are no hidden
or uncertain parts of a player’s “state.”

The real world doesn’t come so cleanly delineated. Douglas
Hofstadter has pointed out that the very notion of a clearly
defined “state” isn’t at all realistic. “If you look at situations in the
world, they don’t come framed, like a chess game or a Go
game.… A situation in the world is something that has no
boundaries at all; you don’t know what’s in the situation, what’s
out of the situation.”13

As an example, consider using reinforcement learning to
train a robot to perform a very useful real-world task: take the
dirty dishes stacked in the sink and put them in the dishwasher.



(Oh, the harmony such a robot would bring to my family!) How
should we define the robot’s “state”? Would it involve everything
in its visual field? The contents of the sink? The contents of the
dishwasher? How about the dog, coming over to lick the dishes,
who needs to be shooed away? However we define its state, the
robot would need to be able to identify different objects—for
example, recognizing a plate (which should go on the bottom
rack of the dishwasher), a coffee mug (which should go on the
top rack), or a sponge (which doesn’t go in the dishwasher at all).
As we’ve seen, object recognition by computers is as yet far from
perfect. In addition, the robot would have to reason about
objects that it can’t see—perhaps pots and pans hidden at the
bottom of the sink. The robot would also need to learn to pick up
different objects and place them (carefully!) in appropriate slots.
All this would require learning to choose among a multitude of
possible actions involving the robot’s body placement, its
grasping “fingers,” its motors controlling the movement of
objects from the sink to the correct dishwasher slot, and so on.14

DeepMind’s game-playing agents required millions of
iterations of training. If we don’t want millions of broken dishes,
we’d have to train our robot in simulation. Games are very fast
and accurate to simulate on a computer; there’s no actual
moving of pieces or actual balls bouncing off paddles or actual
bricks exploding. But simulating a dishwasher-loading robot is
not so easy. The more realistic the simulation, the slower it is to
run on a computer, and even with a very fast computer it’s
enormously difficult to incorporate all the physical forces and
other aspects of dish loading accurately into the simulation. And
then there’s that pesky dog, as well as all the other unpredictable
aspects of the real world; how do we figure out what needs to be
in the simulation and what can safely be ignored?

All these issues led Andrej Karpathy, Tesla’s director of AI, to
note that, for real-world tasks like this, “basically every single
assumption that Go satisfies and that AlphaGo takes advantage



of are violated, and any successful approach would look
extremely different.”15

No one knows what that successful approach would be.
Indeed, the field of deep reinforcement learning is still quite
young. The results I described in this chapter can be seen as a
proof of principle: the combination of deep networks and Q-
learning works surprisingly well in some very interesting, albeit
narrow, domains, and while my discussion has highlighted some
of the current limitations of the field, many people are working
on extending reinforcement learning to apply more generally.
DeepMind’s game-playing programs in particular have ignited
tremendous new interest and enthusiasm in the field; in fact,
deep reinforcement learning was named one of 2017’s “10
Breakthrough Technologies” by MIT’s Technology Review
magazine. In years to come, as reinforcement learning matures,
I’ll be eagerly awaiting a dishwasher-loading robot that learns on
its own, and maybe plays both soccer and Go in its spare time.



Part IV

Artificial Intelligence Meets Natural
Language
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Words, and the Company They
Keep

It’s time for a story.

The Restaurant

A man went into a restaurant and ordered a hamburger, cooked rare.
When it arrived, it was burned to a crisp. The waitress stopped by the
man’s table. “Is the burger okay?” she asked. “Oh, it’s just great,” the
man said, pushing back his chair and storming out of the restaurant
without paying. The waitress yelled after him, “Hey, what about the
bill?” She shrugged her shoulders, muttering under her breath, “Why
is he so bent out of shape?”1

Now let me ask you a question: Did the man eat the hamburger?
I’m guessing that you’re quite confident of your answer, even

though the story doesn’t directly address this question. It’s easy,
at least for us as humans, to read between the lines. After all,
understanding language—including the parts that are left unsaid
—is a fundamental part of human intelligence. It’s no accident
that Alan Turing framed his famous “imitation game” as a
contest involving the generation and understanding of
language.

This part of the book deals with natural-language processing,
which means “getting computers to deal with human language.”



(In AI-speak, “natural” means “human.”) Natural-language
processing (abbreviated NLP) includes topics such as speech
recognition, web search, automated question answering, and
machine translation. Similar to what we’ve seen in previous
chapters, deep learning has been the driving force behind most
of the recent advances in NLP. I’ll describe some of these
advances, using the “Restaurant” story to illustrate a few of the
major challenges machines face when it comes to using and
understanding human language.

The Subtlety of Language
Suppose we want to create a program that can read a passage
and answer questions about it. Question-answering systems are
a central focus of current NLP research, because people want to
use natural language to interact with computers (think about
Siri, Alexa, Google Now, and other “virtual assistants”). However,
in order to answer questions about a text such as the
“Restaurant” story, a program would require sophisticated
linguistic skills as well as substantial knowledge about the way
the world works.

Did the man eat the hamburger? To answer this confidently,
a hypothetical program would need to know that hamburgers
belong to the category “food,” and that foods can be eaten. The
program should know that going into a restaurant and ordering
a hamburger usually means that you plan to eat the hamburger.
Moreover, in a restaurant, once your order has arrived, it is
available to be eaten. A program would need to know that when
a person orders a hamburger “cooked rare,” the person
generally doesn’t want to eat it if it has been “burned to a crisp.”
The program should recognize that when the man says, “Oh, it’s
just great,” he is being sarcastic, and that “it” refers to the
“burger,” which is another word for “hamburger.” The program



would need to surmise that if you “storm” out of a restaurant
without paying, it’s likely that you haven’t eaten your meal.

It’s mind-boggling to think of all the background knowledge
the program would need in order to give confident answers to
basic questions about the story. Did the man leave the waitress a
tip? The program would need to know about the custom of
tipping in restaurants and its purpose of rewarding good service.
Why did the waitress say, “What about the bill”? The program
needs to figure out that by “bill,” the waitress is referring not to,
say, the beak of a bird, or a banknote, or a written piece of
legislation, but to the charge for the man’s meal. Did the
waitress know that the man was angry? The program has to
determine that in asking “Why is he so bent out of shape?” “he”
refers to the man, and “bent out of shape” is an idiom that
means “upset and angry.” Did the waitress know why the man
left the restaurant? It would help if our program knew that the
gesture “shrugging her shoulders” suggests that the waitress
didn’t understand why he stormed out.

Thinking about what our hypothetical program would need
to know reminds me of trying to answer the endless questions
my children would ask when they were very young. Once, when
my son was four years old, I took him with me to go to the bank.
He asked a simple question: “What’s a bank?” My answer
prompted a seemingly endless cascade of “why” questions. “Why
do people use money?” “Why do people want to have a lot of
money?” “Why can’t people keep all their money at home?” “Why
can’t I make my own money?” All good questions, but hard to
answer without having to explain all sorts of things that lie
beyond a four-year-old’s experience.

The situation is much more extreme for machines. A child
who hears the “Restaurant” story already has well-grounded
concepts such as person, table, and hamburger. Children have
basic common sense, knowing, for example, that when the man
walks out of the restaurant, he is no longer inside the restaurant,



but the tables and chairs are probably still there. Or when the
hamburger “arrived,” someone brought it to the man’s table (it
didn’t arrive on its own). Today’s machines lack the detailed,
interrelated concepts and commonsense knowledge that even a
four-year-old child brings to understanding language.

It should come as no surprise, then, that using and
understanding natural language are among AI’s most difficult
challenges. Language is inherently ambiguous, is deeply
dependent on context, and assumes a great deal of background
knowledge common to the communicating parties. As with other
areas of AI, the first several decades of NLP research focused on
symbolic rule-based approaches—that is, programs that were
given grammatical and other linguistic rules and applied these
rules to input sentences. These approaches did not work very
well; it seems to be impossible to capture the subtleties of
language by applying a set of explicit rules. In the 1990s, rule-
based NLP approaches were overshadowed by more successful
statistical approaches, in which massive data sets were employed
to train machine-learning algorithms. Most recently, this
statistical data-driven approach has focused on deep learning.
Can deep learning, along with big data, produce machines that
can flexibly and reliably deal with human language?

Speech Recognition and the Last 10
Percent

Automated speech recognition—the task of transcribing spoken
language into text in real time—was deep learning’s first major
success in NLP, and I’d venture to say that it is AI’s most
significant success to date in any domain. In 2012, at the same
time that deep learning was revolutionizing computer vision, a
landmark paper on speech recognition was published by
research groups at the University of Toronto, Microsoft, Google,



and IBM.2 These groups had been developing deep neural
networks for various aspects of speech recognition: recognizing
phonemes from acoustic signals, predicting words from
combinations of phonemes, predicting phrases from
combinations of words, and so on. According to a Google
speech-recognition expert, the use of deep networks resulted in
the “biggest single improvement in 20 years of speech
research.”3 The same year, a new deep-network speech-
recognition system was released to customers on Android
phones; two years later it was released on Apple’s iPhone, with
one Apple engineer commenting, “This was one of those things
where the jump [in performance] was so significant that you do
the test again to make sure that somebody didn’t drop a decimal
place.”4

If you yourself happened to use any kind of speech-
recognition technology both before and after 2012, you will have
also noticed a very sharp improvement. Speech recognition,
which before 2012 ranged from horribly frustrating to
moderately useful, suddenly became very nearly perfect in some
circumstances. I am now able to dictate all of my texts and
emails on my phone’s speech-recognition app; just a few
moments ago, I read the “Restaurant” story to my phone, using
my normal speaking speed, and it correctly transcribed every
word.

What’s stunning to me is that speech-recognition systems
are accomplishing all this without any understanding of the
meaning of the speech they are transcribing. While the speech-
recognition system on my phone can transcribe every word of
my “Restaurant” story, I guarantee you that it doesn’t
understand a thing about it, or about anything else. Many
people in AI, myself included, had previously believed that AI
speech recognition would never reach such a high level of
performance without actually understanding language. But
we’ve been proven wrong.



This being said, automated speech recognition is still not at
“human level,” contrary to some reports in the media.
Background noise can significantly hurt the accuracy of these
systems; they’re much less effective inside a moving car than in a
quiet room. In addition, these systems are occasionally thrown
off by unusual words or phrases in a way that highlights their
lack of understanding of the speech they are transcribing. For
example, I said, “Mousse is my favorite dessert,” but my
(Android) phone transcribed it as “Moose is my favorite dessert.”
I said, “The bareheaded man needed a hat,” but my phone
transcribed it as “The bear headed man needed a hat.” It’s not
hard to find sentences that will confuse a speech-recognition
system. However, for everyday speech in a quiet environment, I’d
guess that the accuracy of such systems—measured by correct
words—is probably around 90 to 95 percent of humans’
accuracy.5 If you add noise or other complications, the accuracy
goes down considerably.

There’s a famous rule of thumb in any complex engineering
project: the first 90 percent of the project takes 10 percent of the
time and the last 10 percent takes 90 percent of the time. I think
that some version of this rule applies in many AI domains (hello,
self-driving cars!) and will end up being true in speech
recognition as well. The last 10 percent includes dealing not only
with noise, unfamiliar accents, and unknown words but also with
the fact that the ambiguity and context sensitivity of language
can impinge on interpreting speech. What’s needed to power
through that last stubborn 10 percent? More data? More
network layers? Or, dare I ask, will that last 10 percent require an
actual understanding of what the speaker is saying? I’m leaning
toward this last one, but I’ve been wrong before.

Speech-recognition systems are quite complicated; several
different kinds of processing are needed to go from sound
waves to sentences. Current state-of-the-art speech-recognition
systems integrate several different components, including



multiple deep neural networks.6 Other NLP tasks, such as
language translation or question answering, seem simpler at
first glance: the input and output both consist of words.
However, deep learning’s data-driven approach hasn’t produced
the same kind of progress in these areas as it did in speech
recognition. Why not? To answer, let’s look at a few examples of
how deep learning has been applied to important NLP tasks.

Classifying Sentiment
As a first example, let’s look at the area called sentiment
classification. Consider these short reviews of the movie Indiana
Jones and the Temple of Doom:7

“The plot is heavy and the sense of humor is largely missing.”

“A little too dark for my taste.”

“It felt as if the producers tried to make it as disturbing and horrific as
they possibly could.”

“Temple of Doom’s character development and humor is intensely
subpar.”

“The tone is kind of weird and it has a lot of humor that wasn’t
working for me.”

“Without any of the charm or wit that is embodied in the others in this
series.”

In each case, did the reviewer like the movie?
There is big money in using machines to answer such a

question. An AI system that could accurately classify a sentence
(or longer passage) as to its sentiment—positive, negative, or
some other degree of opinion—would be solid gold to
companies that want to analyze customers’ comments about
their products, find new potential customers, automate product



recommendations (“people who liked X also like Y”), or selectively
target their online advertisements. Data on what movies, books,
or other merchandise a person likes or dislikes can be
surprisingly (and perhaps scarily) useful in predicting that
person’s future purchases. What’s more, such information may
have predictive power about other aspects of a person’s life,
such as likely voting patterns and responsiveness to certain
types of news stories or political ads.8 Furthermore, there have
been several efforts, with varying success, to apply “sentiment
mining” of, say, economics-related tweets on Twitter to predict
stock prices and election outcomes.

Putting aside the ethics of these applications of sentiment
analysis, let’s focus on how AI systems might be able to classify
the sentiment of sentences like the ones above. While it’s quite
easy for humans to see that these mini-reviews are all negative,
getting a program to do this kind of classification in a general
way is much harder than it might seem at first glance.

Some early NLP systems looked for the presence of
individual words or short sequences of words as indications of
the sentiment of a text. For example, you might expect words
such as dark, weird, heavy, disturbing, horrific, lacking, and
missing, or sequences such as wasn’t working, without any, a little
too, as indicating negative sentiment in movie reviews. In some
cases this works, but in many cases such sequences can be
found in positive reviews as well. Here are a few examples:

“Despite the heavy subject matter, there’s enough humor to keep it
from becoming too dark.”

“There’s nothing here that is disturbing or horrific as some people
have suggested.”

“I was a little too young to see this terrific movie when it first came
out.”

“If you don’t see it, you’ll be missing out!”



Looking at single words or short sequences in isolation is
generally not sufficient to glean the overall sentiment; it’s
necessary to capture the semantics of words in the context of
the whole sentence.

Soon after deep networks started to excel in computer vision
and speech recognition, NLP practitioners experimented with
applying them to sentiment analysis. As usual, the idea is to train
the network on many human-labeled examples of sentences
with both positive and negative sentiment and have the network
itself learn useful features that allow it to output a classification
confidence for “positive” or “negative” on a new sentence. But
first, how can we get a neural network to process a sentence?

Recurrent Neural Networks
Processing a sentence or passage requires a different type of
neural network from those I have described in previous
chapters. Recall, for example, the convolutional neural network
from chapter 4 that classified an image as “dog” or “cat.” There,
the network’s inputs were the pixel intensities of a fixed-size
image (larger or smaller images had to be scaled to the proper
size). In contrast, sentences consist of sequences of words and do
not have a fixed length. Thus, we need a way for a neural
network to process variable-length sentences.

Applying neural networks to tasks involving ordered
sequences such as sentences goes back to the 1980s, with the
introduction of recurrent neural networks (RNNs), which were
inspired, of course, by ideas on how the brain interprets
sequences. Imagine that you are asked to read the review “A
little too dark for my taste” and classify it as having positive or
negative sentiment. You read the sentence left to right, one
word at a time. As you read it, you start to form impressions of
its sentiment, which become further supported as you finish



reading the sentence. At this point, your brain has some kind of
representation of the sentence in the form of neural activations,
which allow you to confidently state whether the review is
positive or negative.

Recurrent neural networks are loosely inspired by this
sequential process of reading a sentence and creating a
representation of it in the form of neural activations. Figure 32
compares the structures of a traditional neural network and a
recurrent neural network. For simplicity, each network has two
units (white circles) in the hidden layer and one unit in the
output layer. In both networks, the input has connections to the
hidden units, and each hidden unit has a connection to the
output unit (solid arrows). The key difference for the RNN is that
its hidden units have additional “recurrent” connections; each
hidden unit has a connection to itself and to the other hidden
unit (dashed arrows). How does this work? Unlike a traditional
neural network, an RNN operates over a series of time steps. At
each time step, the RNN is fed an input and computes the
activation of its hidden and output units just as does a traditional
neural network. But in an RNN each hidden unit computes its
activation based on both the input and the activations of the
hidden units from the previous time step. (At the first time step,
these recurrent values are set to 0.) This gives the network a way
to interpret the words it “reads” while remembering the context
of what it has already “read.”



FIGURE 32: A, illustration of a traditional neural network; B, illustration of a
recurrent neural network, in which the activations of the hidden units at a

given time step are fed back at the next time step

The best way to understand how RNNs work is to visualize
the network’s operation over time, as in figure 33, which shows
the RNN from figure 32 over eight time steps. To simplify the
illustration, I represent all the recurrent connections in the
hidden layer as a single dashed arrow from one time step to the
next. At each time step, the hidden units’ activations constitute
the network’s encoding of the partial sentence it has seen so far.
The network keeps refining that encoding as it continues to
process words. After the last word in the sentence, the network
is given a special END symbol (similar to a period), which tells the
network that the sentence is finished. Note that the END symbol
is appended by humans to each sentence before the text is fed
to the network.



FIGURE 33: The recurrent neural network of figure 32, operating over eight time
steps

At each time step, the output unit in this network processes
the hidden units’ activations (the “encoding”) to give the
network’s confidence that the input sentence (that is, the part of
the sentence given to the network up to that time step) has a
positive sentiment. When applying the network to a given
sentence, we can ignore this output until the end of the sentence
has been reached. At this point, the hidden units encode the
entire sentence, and the output unit gives the network’s final
confidence (here, 30 percent for positive sentiment or,
equivalently, 70 percent for negative sentiment).

Because the network stops encoding the sentence only when
it encounters the END symbol, the system can in principle
encode sentences of any length into a fixed-length set of
numbers—the activations of the hidden units. For obvious
reasons, this kind of neural network is often called an encoder
network.

Given a set of sentences that humans have labeled as
“positive” or “negative” in sentiment, the encoder network can be
trained from these examples via back-propagation. But there’s
one thing I haven’t explained yet. Neural networks require their
inputs to be numbers.9 What is the best way to encode the input
words as numbers? Answering this question has led to one of
the most important advances in natural-language processing in
the last decade.



A Simple Scheme for Encoding Words as
Numbers

Before explaining possible schemes for encoding words as
numbers, I need to define the notion of a neural network’s
vocabulary. The vocabulary is the set of all words that the
network will be able to accept as inputs. Linguists estimate that
on the order of ten thousand to thirty thousand words are
needed for a reader to deal with most English texts, depending
on how you count; for example, you might group together argue,
argues, argued, and arguing as one “word.” The vocabulary can
also include common two-word phrases, for example, San
Francisco or Golden Gate, by counting them as a single word.

As a concrete example, let’s assume that our network will
have a twenty-thousand-word vocabulary. The simplest possible
scheme for encoding words as numbers is to assign each word
in the vocabulary an arbitrary number between 1 and 20,000.
Then give the neural network 20,000 inputs, one per word in the
vocabulary. At each time step, only one of those inputs—the one
corresponding to the actual input word—will be “switched on.”
For example, say that the word dark has been given the number
317. Then, if we want to input dark to the network, we set input
317 to have value 1, and all the other 19,999 inputs to have value
0. In the NLP field, this is called a one-hot encoding: at each time
step, only one of the inputs—the one corresponding to the word
being fed to the network—is “hot” (non-0).

The one-hot encoding used to be a standard way to input
words to neural networks. But it has a problem: an arbitrary
assignment of numbers to words doesn’t capture any
relationships among words. Suppose that the network has
learned from its training data that the phrase “I hated this
movie” has negative sentiment. Now suppose that the network is
given the phrase “I abhorred this flick,” but it has not
encountered abhorred or flick in its training data. The network



wouldn’t have any way to determine that the meanings of the
two phrases are the same. Suppose further that the network has
learned that the phrase “I laughed out loud” is associated with
positive reviews, and then it encounters the novel phrase “I
appreciated the humor.” The network wouldn’t be able to
recognize the close (though not exactly identical) meanings of
these two phrases. The inability to capture semantic
relationships among words and phrases is a major reason why
neural networks using one-hot encodings often don’t work very
well.

The Semantic Space of Words
The NLP research community has proposed several methods for
encoding words in a way that would capture such semantic
relationships. All of these methods are based on the same idea,
which was expressed beautifully by the linguist John Firth in
1957: “You shall know a word by the company it keeps.”10 That is,
the meaning of a word can be defined in terms of other words it
tends to occur with, and the words that tend to occur with those
words, and so on. Abhorred tends to occur in the same contexts
as hated. Laughed tends to occur with the same words that
humor finds in its company.

In linguistics, this idea is known more formally as
distributional semantics. The underlying hypothesis of
distributional semantics is that “the degree of semantic similarity
between two linguistic expressions A and B is a function of the
similarity of the linguistic contexts in which A and B can
appear.”11 Linguists often make this more concrete via the idea
of a “semantic space.” Figure 34A illustrates a two-dimensional
semantic space of words in which words with similar meanings
are located closer to one another. But one quickly sees that
because words can have many dimensions of meaning, their



semantic space must have more dimensions as well. For
example, the word charm is close to wit and humor, but in a
different context charm is close to bracelet and jewelry. Similarly,
the word bright is close to both the light cluster and the happy
cluster but also has an alternative (though related) meaning that
is close to smart, intelligent, and clever. It would be helpful to
have a third dimension, coming toward you out of the page, to
place these words at the proper distance from one another.
Along one dimension, charm is near wit; along another, it is near
bracelet. But charm should also be close to lucky (whereas
bracelet is not). We need more dimensions! We humans have
trouble picturing a space of more than three dimensions, but the
semantic space of words might actually require many dozens if
not hundreds of dimensions.

FIGURE 34: A, illustration of two word-clusters in a semantic space in which
words with similar meanings are located close to one another; B, a three-

dimensional semantic space in which words are plotted as points

When we’re talking about semantic spaces with multiple
dimensions, we find ourselves in the realm of geometry. Indeed,
NLP practitioners often frame the “meaning” of words in terms
of geometric concepts. For example, figure 34B shows a three-
dimensional space, with x-, y-, and z-axes, along which words can
be placed. Each word is identified with a point (black circle),



defined by three coordinates—that is, the x, y, and z locations of
the point. The semantic distance between two words is equated
with the geometric distance between points on this plot. You can
see that charm is now close to both wit and humor and to bracelet
and jewelry, but along different dimensions. In NLP, people use
the term word vector to refer to the coordinates of a particular
word in such a semantic space. In mathematics, vector is just a
fancy term for the coordinates of a point.12 For example,
suppose that bracelet happens to be located at coordinates (2, 0,
3); this list of three numbers is its word vector in this three-
dimensional space. Note that the number of dimensions in a
vector is simply the number of coordinates.

The idea here is that once all the words in the vocabulary are
properly placed in the semantic space, the meaning of a word
can be represented by its location in this space—that is, by the
coordinates defining its word vector. And what is a word vector
good for? It turns out that using word vectors as numerical
inputs to represent words, as opposed to the simple one-hot
scheme I sketched above, greatly improves the performance of
neural networks in NLP tasks.

How do we actually obtain all the word vectors
corresponding to words in a vocabulary? Is there an algorithm
that will properly place all the words in our network’s vocabulary
in a semantic space in order to best capture the many
dimensions of each word’s meaning? A lot of important work in
NLP has gone into solving this exact problem.

Word2Vec
Many solutions have been suggested for the problem of placing
words in a geometric space, some going back to the 1980s, but
today’s most widely adopted method was proposed in 2013 by
researchers at Google.13 The researchers called their method



“word2vec” (shorthand for “word to vector”). The word2vec
method uses a traditional neural network to automatically learn
word vectors for all the words in a vocabulary. The Google
researchers used part of the company’s vast store of documents
to train their network; once training was completed, the Google
group saved and published all the resulting word vectors on a
web page for anyone to download and use as input to natural-
language processing systems.14

The word2vec method embodies the notion of “you shall
know a word by the company it keeps.” To create the training
data for the word2vec program, the Google group started by
taking a massive set of documents from the Google News
service. (In modern NLP, nothing beats having “big data” lying
around!) The training data for the word2vec program consisted
of a collection of pairs of words, where each word in the pair had
occurred near the other word in the pair somewhere in the
Google News documents. To make the process work better,
extremely frequent words such as the, of, and and were
discarded.

As a concrete example, assume that the words of each pair
occur immediately adjacent to each other in a sentence. In this
case, the sentence “a man went into a restaurant and ordered a
hamburger” first would be transformed into “man went into
restaurant ordered hamburger.” This would yield the following
pairs: (man, went), (went, into), (into, restaurant), (restaurant,
ordered), (ordered, hamburger), plus the reverse of all the pairs
—for example, (hamburger, ordered). The idea is to train the
word2vec network to predict what words are likely to be paired
with a given input word.



FIGURE 35: Illustration of the word2vec neural network, given the word pair
(hamburger, ordered)

Figure 35 illustrates the word2vec neural network.15 This
network actually uses the one-hot encoding I described above.
In figure 35, there are 700,000 input units; this is close to the
vocabulary size used by the Google researchers. Each input
corresponds to a word in the vocabulary. For example, the first
input here corresponds to the word cat, the 8,378th input
corresponds to hamburger, and the 700,000th input corresponds
to cerulean. I just made up these numbers; the actual ordering
doesn’t matter. Similarly, there are 700,000 output units, each
corresponding to a word in the vocabulary, and a relatively small
hidden layer of 300 units. The large gray arrows indicate that
each input has a weighted connection to each hidden unit, and
each hidden unit has a weighted connection to each output unit.

The Google researchers trained their network on billions of
word pairs collected from Google News articles. Given a word



pair such as (hamburger, ordered), the input corresponding to
the first word in the pair (hamburger) is set to 1; all other inputs
are set to 0. During training, each output unit’s activation is
interpreted to be the network’s confidence that the
corresponding word in the vocabulary has occurred adjacent to
the input word. Here, the correct output activations would assign
high confidence to the second word in the pair (ordered).

After the training is completed, one can extract the learned
word vector for any word in the vocabulary. Figure 36 illustrates
how this is done. The figure shows the weighted connections
between one input (corresponding to the word hamburger) and
the three hundred hidden units. These weights, which have been
learned from the training data, have captured information about
the contexts in which the corresponding word is used. These
three hundred weight values are the components of the word
vector assigned to the given word. (The connections from the
hidden units to the outputs are completely ignored in this
process; all the necessary information resides in the input-to-
hidden-layer weights.) Thus, the word vectors learned by this
network have three hundred dimensions. The collection of word
vectors for all words in the vocabulary constitutes the learned
“semantic space.”

Here’s how you can visualize this three-hundred-dimensional
semantic space in your head. Just think of the three-dimensional
plot from figure 34 and then try to visualize a similar plot with a
hundred times as many dimensions, and with seven hundred
thousand words plotted, each with three hundred coordinates.
Just kidding! It’s impossible to visualize such a thing.

What do these three hundred dimensions represent? If we
ourselves were three-hundred-dimensional creatures who had
the brains to visualize such a space, we’d see that any given word
is close to other related words across many meanings. For
example, the vector for hamburger is close to the vector for
ordered; it is also close to the vectors for burger, hot dog, cow, eat,



and so on. Hamburger is also close to dinner even if it has never
been seen in a pair with dinner; this is because hamburger is
close to words that are also close to dinner in similar contexts. If
the network sees word pairs from “I ate a hamburger for lunch”
as well as from “I devoured a hot dog for dinner,” and if lunch
and dinner also appear close together in some training
sentences, then the system can learn that hamburger and dinner
should also be close.

FIGURE 36: Illustration of how to obtain a word vector from the trained word2vec
network

Let’s remember that the goal of this whole process is to find
a numerical representation—a vector—for each word in the
vocabulary, one that captures something of the semantics of the
word. The hypothesis is that using such word vectors will result
in high-performing neural networks for natural-language
processing tasks. But to what extent does the “semantic space”
created by word2vec actually capture word semantics?

This question is hard to answer, because we can’t visualize
the three-hundred-dimensional semantic space learned by
word2vec. However, we can do a few things to glimpse into this
space. The simplest approach is to take a given word and find
the words that have ended up closest to it in the semantic space,
by looking at the distances between word vectors. For example,
after the network has been trained, the closest words to France
include Spain, Belgium, Netherlands, Italy, Switzerland,
Luxembourg, Portugal, Russia, Germany, and Catalonia.16 The



word2vec algorithm wasn’t told the concept of country or
European country; these are just the words that appear in the
training data in similar contexts to France, the way hamburger
and hot dog do in my example above. Indeed, if I ask for the
closest words to hamburger, the list includes burger,
cheeseburger, sandwich, hot dog, taco, and fries.17

We can also look at more complex relationships that result
from the network’s training. The Google researchers who created
word2vec observed that in the word vectors created by their
network, the distance between the word for a country and the
word for that country’s capital is approximately the same for
many countries. This is illustrated in figure 37, which shows a
two-dimensional representation of these distances. Again, the
system wasn’t given the notion of a “capital” of a country; these
relationships simply emerged from the network’s training on
billions of word pairs.

FIGURE 37: Two-dimensional representation of distances between word vectors
for countries and word vectors for their capital cities



This kind of regularity gave people the idea that word2vec
could “solve” analogy problems such as “Man is to woman as king
is to ______.” Just take the word vector for woman, subtract the
word vector for man, and add the result to the word vector for
king.18 Then find the word vector in the space that is closest to
the result. Yup, it’s queen. In my experimenting with an online
word2vec demonstration,19 this method often produces some
very good results (“Dinner is to evening as breakfast is to
morning”), but just as often it is cryptic (“Thirsty is to drink as tired
is to drunk”) or nonsensical (“Fish is to water as bird is to hydrant”).

Such properties of learned word vectors are intriguing and
show that some relationships are captured. But will these
properties make word vectors generally useful in NLP tasks? The
answer seems to be a resounding “yes.” Nowadays, virtually all
NLP systems use word vectors of one sort or another (word2vec
is only one flavor) as the way to input words.

Here’s an analogy for you: to a person with a hammer,
everything looks like a nail; to an AI researcher with a neural
network, everything looks like a vector. It occurred to many
people that the word2vec trick could be played not only with
words but with whole sentences as well. Why not encode an
entire sentence as a vector in the same way that words are
encoded, using sentence pairs instead of word pairs in training?
Wouldn’t something like this capture semantics better than
simply a set of word vectors? Indeed, several groups have tried
to do this; one group from the University of Toronto dubbed
these sentence representations “thought vectors.”20 Others have
experimented with networks that encode paragraphs and whole
documents as vectors, though with mixed success. Reducing all
of semantics to geometry is an alluring idea for AI researchers. “I
think you can capture a thought by a vector,” proclaimed
Google’s Geoffrey Hinton.21 Facebook’s Yann LeCun concurred:
“[At Facebook AI Research] we want to embed the world in
thought vectors. We call this World2Vec.”22



One last note about word vectors. Several groups have
shown that these word vectors, perhaps unsurprisingly, capture
the biases inherent in the language data that produces them.23

For example, here’s an analogy problem: “Man is to woman as
computer programmer is to ______.” If you solve this using the
word vectors Google provides, the answer is homemaker. The
reverse problem, “Woman is to man as computer programmer is
to ______,” yields mechanical engineer. Here’s another one: “Man is
to genius as woman is to______.” Answer: muse. What about
“Woman is to genius as man is to ______”? Answer: geniuses.

So much for decades of feminism. We can’t blame the word
vectors; they simply capture sexism and other biases in our
language, and our language reflects biases in our society. But
blameless as word vectors may be, they are a key component in
every modern NLP system, ranging from speech recognition to
language translation. Biases in word vectors might seep through
to produce unexpected, hard-to-predict biases in widely used
NLP applications. AI scientists who investigate such biases are
just beginning to understand what kinds of subtle effects these
biases might have on the outputs of NLP systems, and several
groups are working on algorithms for “de-biasing” word
vectors.24 De-biasing word vectors is a difficult challenge, but
probably not as hard as the alternative: de-biasing language and
society.
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Translation as Encoding and
Decoding

If you’ve ever used Google Translate or any other modern
automatic translation system, you know that the system can
translate a piece of text from one language to another in a split
second. What’s even more impressive is that online translation
systems are providing these split-second translations for people
all over the world, 24/7, and can typically deal with more than a
hundred different languages. Several years ago, when my family
and I were in France for a six-month sabbatical, I used Google
Translate extensively to construct carefully diplomatic emails to
our very formal French landlady about a difficult mildew
situation in the house. Given my far-from-perfect French, Google
Translate saved me hours of looking up words I didn’t know, not
to mention trying to remember where to put accents and which
gender goes with which French noun.

I also used Google Translate to help interpret our landlady’s
often confusing replies, and while the program’s translations
gave me a fairly clear sense of her meaning, the English it
produced was full of errors, large and small. I still cringe when I
imagine what my French messages looked like to our landlady.
In 2016, Google launched a new “neural machine translation”
system, which the company claims has achieved “the largest



improvements to date for machine translation quality,”1 but the
caliber of machine-translation systems remains far below that of
capable human translators.

Spurred in part by the U.S.-Soviet Cold War, automated
translation—particularly between English and Russian—was one
of the earliest AI projects. Early approaches to automated
translation were enthusiastically promoted by the
mathematician Warren Weaver in 1947: “One naturally wonders
if the problem of translation could conceivably be treated as a
problem in cryptography. When I look at an article in Russian, I
say, ‘This is really written in English, but it has been coded in
some strange symbols. I will now proceed to decode it.’”2 As
usual in AI, such “decoding” turned out to be harder than people
originally expected.

Like other AI research in the early days, the original
approaches to machine translation relied on complicated sets of
human-specified rules. With the goal of translating from a source
language (for example, English) to a target language (for
instance, Russian), a machine-translation system would be given
syntax rules for both languages as well as rules for mappings
between syntactical structures. In addition, human
programmers would create dictionaries for the machine-
translation system with word-to-word (and simple phrase-to-
phrase) equivalences. Like many other efforts in symbolic AI,
while these approaches worked well in some narrow cases, they
were quite brittle, suffering from all of the challenges of natural
language that I discussed earlier.

Starting in the 1990s, a new approach, called statistical
machine translation, came to dominate the field. Following the
trend in AI at the time, statistical machine translation relied on
learning from data rather than having humans specify rules. The
training data consisted of large collections of pairs of sentences:
the first sentence of each pair was from the source language,
and the second sentence was a (human-created) translation of



the first into the target language. These sentence pairs were
obtained from government documents in bilingual countries (for
example, every document from the Canadian Parliament is
produced in both English and French), from United Nations
transcripts, which are translated into the six official languages of
the UN, and from other large sets of original and translated
documents.

The statistical machine-translation systems of the 1990s to
the 2000s typically computed large tables of probabilities linking
phrases in the source and target languages. When given a new
sentence in, say, English—for instance, “A man went into a
restaurant”—the system would split the sentence into “phrases”
(“A man went,” “into a restaurant”) and look in its probability
tables to find the best translations for those phrases in the
target language. These systems had additional steps to make
sure the translated phrases all worked together as a sentence,
but the main driver of the translation was the probabilities of
phrases learned from the training data. Even though statistical
machine-translation systems had very little knowledge of syntax
in either language, on the whole these methods produced better
translations than the earlier rule-based approaches.

Google Translate—probably the most widely used
automated-translation program—employed these kinds of
statistical machine-translation methods from the time of its
launch in 2006 until 2016, at which time Google researchers had
developed what they claimed was a superior translation method
based on deep learning, called neural machine translation. Soon
after, neural machine translation was adopted for all state-of-
the-art machine-translation programs.

Encoder, Meet Decoder



Figure 38 gives a sketch of what’s under the hood when you use
Google Translate (and other contemporary machine-translation
programs), here translating from English to French.3 It’s a
complicated system, and I’ve simplified many of the details, but
this figure should give you the main ideas.4

The top half of figure 38 shows a recurrent neural network
(an encoder network), much like the one I described in the
previous chapter. The English sentence “A man went into a
restaurant” is encoded over seven time steps. I’ve used white
rectangles to represent the network encoding this sentence; I’ll
talk about what the network inside the rectangles actually looks
like a bit later. During the encoding stage, at each time step one
word of the sentence is input to the network in the form of a
word vector, similar to the ones I described above.5 The dashed
arrows from one time step to the next are shorthand for the
recurrent connections in the hidden layer. One word at a time,
the network builds up a representation of the English sentence,
encoded in the activations of its hidden units.



FIGURE 38: Sketch of an “encoder-decoder” pair of networks for language
translation. The white rectangles represent the encoder and decoder
networks, operating over successive time steps. The input words—for

example, man—are first turned into word vectors—for instance,
wordvec(man)—before being given to the network.

At the final time step, the encoder network is given a special
END symbol, and the activations of the hidden units are now an
encoding of the sentence. These final hidden-unit activations
from the encoder are then given as input to a second network, a
decoder network, which will create the translated version of the
sentence. The decoder network, illustrated in the bottom half of
figure 38, is simply another recurrent network, but one in which
the outputs are numbers representing the words that form the
translated sentence—each of which is also fed back to the
network at the next time step.6

Note that the French sentence has seven words, whereas the
English sentence has six. This encoder-decoder system can in
principle translate a sentence of any length into a sentence of
any other length.7 However, when sentences get too long, an
encoder network eventually loses useful information; that is, at
later time steps it “forgets” important earlier parts of the
sentence. For example, consider this sentence:

My mother said that the cat that flew with her sister to Hawaii the year
before you started at that new high school is now living with my
cousin.

Who is living with my cousin? The answer might affect how the
verbs is and living get translated in some languages. Humans are
pretty good at processing this kind of convoluted sentence, but
recurrent neural networks can easily lose the thread. Things get
muddled when the network tries to encode the entire sentence
into one set of hidden-unit activations.

In the late 1990s, a research group in Switzerland proposed a
solution: the individual units in a recurrent neural network



should have a more complicated structure, with specialized
weights that determine what information gets sent on at the
next time step and what information can be “forgotten.” These
researchers called the more complex units “long short-term
memory” (LSTM) units.8 That’s a confusing name, but the idea is
that these units allow for more “short-term” memory that can
last throughout the processing of the sentence. The specialized
weights are learned via back-propagation just like the regular
weights in a traditional neural network. While figure 38 shows
the encoder and decoder networks abstractly as white
rectangles, such networks are actually made up of LSTM units.

Automated machine translation in the deep-learning age is a
triumph of big data and fast computation. To create a pair of
encoder-decoder networks to translate from, say, English to
French, the networks are trained on more than thirty million
human-translated pairs of sentences. Deep recurrent neural
networks made up of LSTM units and trained on large data
collections have become the bread and butter of modern
natural-language processing systems, not just in the encoding
and decoding networks used by Google Translate, but also for
speech recognition, sentiment classification, and, as we’ll see
below, question answering. These systems often include several
tricks to improve their performance, such as inputting the
original sentence both forward and backward, as well as
mechanisms for focusing attention on different parts of the
sentence at different time steps.9

Evaluating Machine Translation
After Google Translate launched its neural machine translation in
2016, the company claimed that the new approach was “bridging
the gap between human and machine translation.”10 Other large
tech companies, sprinting to catch up, created their own online



machine-translation programs, similarly based on the encoder-
decoder architecture that I described above. These companies,
and the tech media covering them, have enthusiastically
promoted these translation services. MIT’s Technology Review
magazine reported that “Google’s new service translates
languages almost as well as humans can.”11 Microsoft
announced in a company press release that its Chinese-to-
English news-translation service had reached “human parity.”12

IBM declared that “IBM Watson is now fluent in nine languages
(and counting).”13 Facebook’s executive in charge of language
translation told an audience, “What we believe is that neural
networks are learning the underlying semantic meaning of the
language.”14 The CEO of the specialty translation company DeepL
bragged, “Our [machine-translation] neural networks have
developed an astounding sense of understanding.”15

In general, such declarations are in part fueled by the race
among tech companies to sell various AI services to other
companies, and language translation is a major offering with
high profit potential. While websites such as Google Translate
offer free translation for small amounts of text, if you’re a
company and you want to translate a large volume of
documents or provide translation for customers on your
websites, you can find many fee-based machine-translation
services available, all powered by the same encoder-decoder
architecture.

To what extent should we believe the claims that machines
are actually learning “semantic meaning” or that machine
translation is swiftly closing in on human levels of accuracy? To
answer this, let’s look more closely at the actual results these
claims are based on. In particular, let’s look at how these
companies measure the quality of a machine or human
translation. Measuring the quality of a translation is not at all
straightforward; a given text can be translated correctly in any
number of ways (and incorrectly in even more ways). Because



there’s no single correct answer for translating a given text, it’s
hard to design an automatic method for computing the system’s
accuracy.

The claims of “human parity” and “bridging the gap between
machines and humans” in machine translation are based on two
methods of evaluating translation results. The first is an
automated method—a computer program—that compares a
machine’s translation with those of humans and spits out a
score. The second method employs bilingual humans to
manually evaluate translations. For the first method, the
program used in virtually all evaluations of machine translation
is called bilingual evaluation understudy, or BLEU.16 To measure
the quality of a translation, BLEU essentially counts the number
of matches—between words and phrases of varying lengths—in
a machine-translated sentence and one or more human-created
“reference” (that is, “correct”) translations. While the ratings
produced by BLEU often correlate with human judgments of
translation quality, BLEU tends to overrate bad translations.
Several machine-translation researchers have told me that BLEU
is a flawed way to evaluate translations, used only because no
one has yet found an automatic method that works better in
general.

Given the drawbacks of BLEU, the “gold standard” for
evaluating a machine-translation system is for bilingual humans
to manually rate the translations produced by the system. These
same human evaluators can also rate corresponding translations
created by professional human translators in order to compare
with the machine-translation ratings. But there are also
drawbacks to this gold-standard approach: hiring humans costs
money, of course, and unlike computers humans get tired after
rating more than a few dozen sentences. Thus, unless you can
hire an army of bilingual human raters who have a lot of time on
their hands, your evaluation process will be limited.



The machine-translation groups at both Google and
Microsoft carried out this kind of gold-standard (albeit limited)
evaluation by hiring small groups of bilingual human evaluators
to provide ratings.17 Each evaluator was given a set of sentences
in a source language, along with translations of those sentences
into the target language. The translations were created both by
the neural machine-translation system and by professional
human translators. Google’s evaluation consisted of about five
hundred sentences from news stories and from Wikipedia articles
in several different languages. Averaging each evaluator’s
ratings over all sentences, and then averaging over the
evaluators, the Google researchers found that the average rating
given to their neural machine-translation system was close to
(though below) the ratings given to the human-translated
sentences. This was the case for all of the language pairs in the
evaluation.

Microsoft used a similar averaging method to evaluate
translations of news stories from Chinese to English. The ratings
of the translations by Microsoft’s neural machine-translation
system were very close to (and sometimes even exceeded) the
ratings of the human translations. In all cases, the human
evaluators rated the translations produced by neural machine
translation as better than those produced by previous machine-
translation methods.

In short, with the introduction of deep learning, machine
translation has gotten better. But can we interpret these results
to justify a claim that machine translation is now close to “human
level”? In my view, this claim is unjustified for several reasons.
First, averaging over ratings can be misleading. Imagine a case in
which, while most sentence translations are rated “terrific,” there
are many that are rated “horrible.” The average would be “pretty
good.” However, you’d probably prefer a more reliable
translation system that was always “pretty good” and never
“horrible.”



Additionally, the claims that these translation systems are
close to “human level” or at “human parity” are based entirely on
evaluating translations of single, isolated sentences rather than
longer passages. Sentences in a longer passage can depend on
one another in important ways that can be missed if the
sentences are translated in isolation. I haven’t seen any formal
studies of evaluating machine translation for longer passages,
but my general experience is that the translation quality of, say,
Google Translate declines significantly when it is given whole
paragraphs instead of single sentences.

Finally, the sentences in these evaluations are all drawn from
news stories and Wikipedia pages, which are typically written
with care to avoid ambiguous or idiomatic language; such
language can cause serious problems for machine-translation
systems.

Lost in Translation
Remember my “Restaurant” story from the beginning of the
previous chapter? I didn’t design that story to test translation
systems, but the story actually does a good job of illustrating the
challenges presented to machine-translation systems by
colloquial, idiomatic, and potentially ambiguous language.

I used Google Translate to translate the “Restaurant” story
from English into three target languages: French, Italian, and
Chinese. I gave the resulting translations (without the original
story) to friends who are bilingual in English and the target
language and asked them to translate Google’s translation into
English, in order to get a sense of what a speaker of the target
language would glean from the text rendered into that
language. Here, for your reading pleasure, are the results. (The
translations from Google Translate that my friends worked from
are given in the notes at the end of the book.)



Original story:

A man went into a restaurant and ordered a hamburger, cooked rare.
When it arrived, it was burned to a crisp. The waitress stopped by the
man’s table. “Is the burger okay?” she asked. “Oh, it’s just great,” the
man said, pushing back his chair and storming out of the restaurant
without paying. The waitress yelled after him, “Hey, what about the
bill?” She shrugged her shoulders, muttering under her breath, “Why
is he so bent out of shape?”

Google Translate’s French version, human translated back into English:

A man entered a restaurant and ordered a hamburger, cooked
infrequent. When he arrived, he got burned at a crunchy. The waitress
stopped walking in front of the man’s table. “Is the hamburger doing
well?” She asked. “Oh, it’s terrific‚” said the man while putting his chair
back and while going out of the restaurant without paying. The
waitress shouted after him, “Say, what about the proposed
legislation?” She shrugged her shoulders, mumbling in her breath,
“Why is he so distorted?”18

Google Translate’s Italian version, human translated back into English:

A man went to a restaurant and ordered a burger, cooked sparse.
When it arrived, it was burnt for an almond brittle. The waitress
stopped near the man’s table. “Is the burger okay?” she asked. “Oh, it’s
simply fantastic,” said the man, pushing back his chair and leaving the
restaurant without paying. The waitress shouted after him, “Hey, what
about the bill?” She shrugged her shoulders, muttering in a low voice,
“Why is he so bent?”19

Google Translate’s Chinese version, human translated back into English:

A man walked into a restaurant and ordered a rarely seen hamburger.
When it reached its destination, it was roasted very crispy. The
waitress stopped next to the man’s table. “Is the hamburger good?”
she asked. “Oh, it’s great,” the man said, pushing aside his chair and
rushing out of the restaurant without paying. The waitress shouted
“Hey, what about the bill?” She shrugged her shoulders and
whispered, “Why was he so stooped over?”20



Reading these translations is something like listening to a
familiar piece of music played by a talented but error-prone
pianist. The piece is generally recognizable but uncomfortably
mangled; the tune goes along beautifully for short bursts but
keeps being interrupted by jarring wrong notes.

You can see that Google Translate sometimes chooses the
wrong meaning of ambiguous words, such as rare and bill
(translated into French to mean “infrequent” and “proposed
legislation,” respectively); this happens because the program
ignores context from previous words or sentences. Idioms such
as burned to a crisp and bent out of shape are translated in
strange ways; the program doesn’t seem to have any way of
finding a corresponding idiom in the target language or any way
to grasp the idiom’s actual meaning. While the skeletal meaning
of the story comes through, subtle but important nuances get
lost in all the translations, including the man’s anger, expressed
in “storming out of the restaurant,” and the waitress’s
displeasure, expressed in “muttering under her breath.” Not to
mention that correct grammar is occasionally missing in action.

I don’t mean to specifically pick on Google Translate; I tried
several other online translation services and got similar results.
That’s not surprising, because these systems all use virtually the
same encoder-decoder architecture. It’s also important to point
out that the translations I obtained represent one snapshot in
time for these translation systems; they are continually being
improved, and some of the specific translation errors seen here
may be fixed by the time you are reading this. However, I’m
skeptical that machine translation will actually reach the level of
human translators—except perhaps in narrow circumstances—
for a long time to come.

The main obstacle is this: like speech-recognition systems,
machine-translation systems perform their task without actually
understanding the text they are processing.21 In translation as
well as in speech recognition, the question remains: To what



extent is such “understanding” needed for machines to reach
human levels of performance? Douglas Hofstadter argues,
“Translation is far more complex than mere dictionary look-up
and word rearranging.… Translation involves having a mental
model of the world being discussed.”22 For example, a human
translating the “Restaurant” story would have a mental model in
which, when a man storms out of a restaurant without paying, a
waitress would be more likely to shout at him about paying for
his meal than about “proposed legislation.” Hofstadter’s words
were echoed in a recent article by the AI researchers Ernest
Davis and Gary Marcus: “Machine translation  … often involves
problems of ambiguity that can only be resolved by achieving an
actual understanding of the text—and bringing real-world
knowledge to bear.”23

Could an encoder-decoder network attain the necessary
mental models and real-world knowledge simply by exposure to
a larger training set and more network layers, or is something
fundamentally different needed? This is still an open question
and is the subject of intense debate in the AI community. For
now, I’ll simply say that while neural machine translation can be
impressively effective and useful in many applications, the
translations, without post-editing by knowledgeable humans, are
still fundamentally unreliable. If you use machine translation—
and I do so myself—you should take the results with a grain of
salt. In fact, when I had Google Translate translate “take it with a
grain of salt” from English to Chinese and then back to English, it
told me to “bring a salt bar.” That might be a better idea.

Translating Images to Sentences
Here’s a crazy idea: in addition to translating between languages,
could something like an encoder-decoder pair of neural
networks be trained to translate from images to language? The



idea would be to use one network to encode an image and
another network to “translate” that image into a sentence
describing the content of the image. After all, isn’t creating an
image caption just another kind of “translation”—this time
between the “language” of an image and the language of a
caption?

It turns out this idea is not so crazy. In 2015 two groups—
one from Google and the other from Stanford University—
independently published very similar papers on this topic at the
same computer-vision conference.24 Here I’ll describe the system
developed by the Google group, called Show and Tell, because it
is conceptually a bit simpler.

Figure 39 gives a sketch of how the Show and Tell system
works.25 It’s something like the encoder-decoder system from
figure 38, but here the input is an image instead of a sentence.
The image is fed to a deep convolutional neural network instead
of an encoder network. The ConvNet here is similar to the ones I
described in chapter 4, except that this ConvNet doesn’t output
object classifications; instead, the activations of its final layer are
given as input to the decoder network. The decoder network
“decodes” these activations to output a sentence. To encode the
image, the authors used a ConvNet that had been trained for
image classification on ImageNet, the huge image data set that I
described in chapter 5. The task here is to train the decoder
network to generate an appropriate caption for an input image.

How does this system learn to produce reasonable captions?
Recall that for language translation, the training data consists of
pairs of sentences, in which the first sentence in a pair is in the
source language and the second is a human translator’s
translation into the target language. In the case of image
captioning, each training example consists of an image paired
with a caption. The images were downloaded from repositories
such as Flickr.com, and the captions for these images were
produced by humans—namely, Amazon Mechanical Turk



workers, who were hired by Google for this study. Because
captions can be so variable, each image was given a caption by
five different people. Thus, each image appears in the training
set five times, each time paired with a different caption. Figure
40 shows a sample training image and the captions given by the
Mechanical Turk workers.

FIGURE 39: Sketch of Google’s automated image-captioning system

FIGURE 40: Sample training image with captions given by Amazon Mechanical
Turk workers

The Show and Tell decoder network was trained on about
eighty thousand image-caption pairs. Figure 41 gives a few
examples of captions that the trained Show and Tell system
generated on test images—that is, images that were not in its
training set.

It’s hard not to be dazzled, and maybe a bit stunned, that a
machine can take in images in the form of raw pixels and
produce such accurate captions. That’s certainly how I felt when I
first read about these results in The New York Times. The author
of that article, the journalist John Markoff, wrote a careful
description: “Two groups of scientists, working independently,
have created artificial intelligence software capable of



recognizing and describing the content of photographs and
videos with far greater accuracy than ever before, sometimes
even mimicking human levels of understanding.”26

FIGURE 41: Four (accurate) automatically produced captions from Google’s Show
and Tell system

Other journalists were not so restrained. “Google’s AI Can
Now Caption Images Almost as Well as Humans,” proclaimed
one news website.27 Other companies quickly got into the act of
automated image captioning using similar methods and made
their own claims: “Microsoft researchers are at the forefront of
developing technology that can automatically identify the
objects in a picture, interpret what is going on and write an
accurate caption explaining it,” claimed a Microsoft blog.28

Microsoft even created an online demo of its system, called
CaptionBot. CaptionBot’s website declares, “I can understand the



content of any photograph and I’ll try to describe it as well as
any human.”29 Companies such as Google, Microsoft, and
Facebook started discussing how such technology might be
applied to provide automated image descriptions to blind or
otherwise visually impaired people.

FIGURE 42: Not-so-accurate captions from Google’s Show and Tell system and
Microsoft’s CaptionBot

But not so fast. Automated image captioning suffers from
the same kind of bipolar performance seen in language
translation. When it’s good, as in figure 41, it seems almost
magical. But its errors can range from slightly off to completely
nonsensical. Figure 42 shows some examples from this range.
These wrongheaded captions might make you laugh, but if you
are a blind person who can’t see the photo, it would be hard to



know if the caption you are given is one of the good ones or one
of the bad ones.

While Microsoft’s CaptionBot says it can “understand the
content of any photograph,” the problem is that the opposite is
true. Even when their captions are correct, these systems don’t
understand photos in the sense that humans understand them.
When I gave Microsoft’s CaptionBot the “soldier in the airport
with dog” photo from chapter 4, the system’s output was “A man
holding a dog.” Sort of. Except for the “man” part. But this
caption misses everything interesting about the photo,
everything about the way it speaks to us, to our experience,
emotions, and knowledge about the world. That is, it misses the
meaning of the photo.

I’m certain that these systems will improve as researchers
apply more data and new algorithms. However, I believe that the
fundamental lack of understanding in caption-generating
networks inevitably means that, as in language translation, these
systems will remain untrustworthy. They will work very well in
some cases but fail spectacularly in others. Moreover, even when
they are mostly correct, they will often fail to capture the gist of
an image depicting a situation rich with meaning.

NLP systems that classify the sentiment of sentences,
translate documents, and describe photos, while still far from
human abilities at these tasks, are useful for many real-world
purposes, and thus have become very profitable for their
developers. But the ultimate dream of NLP researchers is a
machine that can fluently and flexibly interact with its users in
real time—in particular, converse with them and answer their
questions. The next chapter explores the challenges of creating
AI systems that can deal with all of our queries.



13

Ask Me Anything

USS Enterprise. Stardate: 42402.7

LIEUTENANT COMMANDER DATA: Computer, I wish to know more about
humor. Why certain combinations of words and actions
make humans laugh.

COMPUTER: Source material on that subject is extensive. Please
specify.

LIEUTENANT COMMANDER DATA: Animated presentation, humanoid.
Interaction required.

COMPUTER: Physical humor, cerebral, or general raconteur?
LIEUTENANT COMMANDER DATA: Of all performers available, who is

considered funniest?
COMPUTER: Twenty-third century Stan Orega specialized in jokes

about quantum mathematics.
LIEUTENANT COMMANDER DATA: No. Too esoteric. More generic.
COMPUTER: Accessing.
(A list of names is displayed.)

—Star Trek: The Next Generation, season 2, episode 4: “The Outrageous Okona”1

The computer on the starship Enterprise—with its vast store of
knowledge and seamless understanding of the questions put to
it—has long been a lodestar for human-computer interaction,



envied by Star Trek fans and AI researchers alike (and the
intersection between these groups is, shall we say, not
insignificant).

The former Google executive Tamar Yehoshua frankly
acknowledged the Star Trek computer’s influence on designing
the company’s search engine of the future: “Our vision is the Star
Trek computer. You can talk to it—it understands you, and it can
have a conversation with you.”2 Star Trek’s fictional technology
was likewise a central inspiration for IBM’s Watson question-
answering system, according to the Watson project leader, David
Ferrucci: “The computer on ‘Star Trek’ is a question-answering
machine. It understands what you are asking and provides just
the right chunk of response that you needed.”3 The same story
holds for Amazon’s Alexa home assistant, according to the
Amazon executive David Limp: “The bright light, the shining light
that’s still many years away, many decades away, is to recreate
the Star Trek computer.”4

Star Trek might have instilled in many of us the dream of
being able to ask a computer just about anything and having it
respond accurately, concisely, and usefully. But anyone who has
used one of today’s AI-powered virtual assistants—Siri, Alexa,
Cortana, Google Now, among others—knows that this dream
has not yet arrived. We can question these machines by voice—
they’re usually good at transcribing speech—and they can
answer us with their smooth, only slightly robotic voices. They
can sometimes figure out what kind of information we’re looking
for and point us to a relevant web page. However, these systems
don’t comprehend the meaning of what we ask them. Alexa, say,
can read to me the details of the Olympic sprinter Usain Bolt’s
entire biography, describe how many gold medals he won, and
relate the speed at which he ran the hundred meters in the
Beijing Olympics. But remember, easy things are hard. If you ask
Alexa, “Does Usain Bolt know how to run?” or “Can Usain Bolt run
fast?” in both cases it will respond with the canned phrases



“Sorry, I don’t know that one” or “Hmmm, I’m not sure.” After all,
it’s not designed to know what “running” or “fast” actually mean.

While computers can accurately transcribe our requests, the
“final frontier,” if you will, is to get them to understand the
meaning of our questions.

The Story of Watson
Prior to Siri, Alexa, and the like, the most famous question-
answering program in the AI landscape was IBM’s Watson. You
may remember back in 2011, when Watson thrillingly beat two
human champions on the game show Jeopardy! Not long after
Deep Blue’s 1997 win against the world chess champion Garry
Kasparov, executives at IBM were pushing for another high-
profile project that, unlike Deep Blue, could actually lead to a
useful product for IBM customers. A question-answering system
—indeed, inspired in part by the Star Trek computer—perfectly fit
the bill. The story goes that one of IBM’s vice presidents, Charles
Lickel, was having dinner in a restaurant and noticed that the
other patrons had suddenly become quiet. Everyone in the
restaurant was focused on a television showing an episode of
Jeopardy! in which the mega-champion Ken Jennings was
competing. This gave Lickel the idea that IBM should develop a
computer program that could play Jeopardy! well enough to win
against human champions. IBM could then showcase the
program in a highly publicized televised tournament.5 This idea
helped give rise to a many-year effort, led by natural-language
researcher David Ferrucci, which resulted in Watson, an AI
system named after IBM’s first chairman, Thomas J. Watson.

Jeopardy! is a hugely popular TV game show that first aired in
1964. The game features three contestants, who take turns
choosing from a list of categories (for example, “U.S. History”
and “At the Movies”). The host then reads a “clue” from that



category, and the contestants compete to be the first to “buzz in”
(push a buzzer). The first contestant to buzz in gets to respond
with a “question” that corresponds to the clue. For example, for
the clue “Released in 2011, it’s the only film that has won both
the Oscar and France’s César for Best Film of the Year,” the
correct response is, “What is The Artist?” Winning on Jeopardy!
requires a contestant to have broad knowledge, ranging from
ancient history to pop culture, and quick recall, as well as the
ability to make sense of frequent puns, slang, and other
colloquial language in the categories and clues. Here’s another
example: “In 2002 Eminem signed this rapper to a 7-figure deal,
obviously worth a lot more than his name implies.” The correct
response: “Who is 50 Cent?”

When given a Jeopardy! clue, Watson produced its response
by combining a large set of different AI methods. For example,
Watson used several different natural-language processing
methods for parsing the clue, figuring out which words were
important, and classifying the clue as to what type of response
was needed (for example, a person, a place, a number, a movie
title). The program ran on specialized parallel computers in order
to search rapidly through huge databases of knowledge. As a
New York Times Magazine article recounted, “Ferrucci’s team input
millions of documents into Watson to build up its knowledge
base—including, [Ferrucci] says, ‘books, reference material, any
sort of dictionary, thesauri, folksonomies, taxonomies,
encyclopedias, any kind of reference material you can imagine
getting your hands on.… Novels, bibles, plays.’”6 For a given clue,
the program produced multiple possible responses and had
algorithms for assigning a confidence value to each response. If
the highest-confidence response exceeded a threshold, the
program buzzed in to give that response.

Fortunately for the Watson team, Jeopardy! fans had long
been archiving the complete set of categories, clues, and correct
responses from all Jeopardy! games ever broadcast. This archive



was a godsend for Watson—an invaluable source of examples
for the supervised-learning methods used to train many of the
system’s components.

In February 2011, Watson competed in a three-game match
—broadcast internationally—against two former Jeopardy!
champions, Ken Jennings and Brad Rutter. I watched these
shows with my family, and we were all mesmerized. Near the
end of the last game, it became clear that Watson was going to
win. The final clue of the final game was this: “William Wilkinson’s
An Account of the Principalities of Wallachia and Moldavia inspired
this author’s most famous novel.” In Jeopardy!, the final clue
requires a written answer from each contestant. All three
contestants correctly wrote “Who is Bram Stoker?” but Ken
Jennings, known for his dry wit, conceded Watson’s inevitable
victory by adding a pop-culture reference to his answer card: “I
for one welcome our new computer overlords.”7 Ironically,
Watson didn’t get the joke. Jennings later quipped, “To my
surprise, losing to an evil quiz-show-playing computer turned
out to be a canny career move. Everyone wanted to know What It
All Meant, and Watson was a terrible interview, so suddenly I was
the one writing think pieces and giving TED Talks.… Like
Kasparov before me, I now make a reasonable living as a
professional human loser.”8

During its televised Jeopardy! games, Watson gave viewers,
including me, the uncanny impression that it could effortlessly
and fluently understand and use language, interpreting and
responding to tricky clues with lightning speed on most of the
topics thrown to it.

CLUE: Even a broken one of these on your wall is right twice a
day.

WATSON: What is a clock?



CLUE: To push one of these paper products is to stretch
established limits.

WATSON: What is an envelope?

CLUE: Classic candy bar that’s a female Supreme Court justice.
WATSON: Who is Baby Ruth Ginsburg?

The TV camera often panned to the Watson team, sitting in the
audience, with ecstatic grins on their faces. Watson was on a roll.

The broadcasts featured a visual representation of Watson—
a screen—at a dais along with the other two contestants. Instead
of a face, the screen showed a shining globe surrounded by
swirling lights. Watson’s category choices and responses to clues
were given in a pleasant and friendly yet mechanical voice. All
this was carefully designed by IBM to give the impression that
Watson, while not exactly human, was actively listening and
responding to the clues, just as the humans were. In reality,
Watson didn’t use speech recognition; it was given the text of
each clue at the same time the clue was being read to the
human contestants.

Watson’s responses to clues on occasion produced cracks in
the humanlike facade. It wasn’t just that the system was wrong
on some clues; all of the contestants made errors. It was that
Watson’s errors were often … un-humanlike. The error that got
the most press was Watson’s gaffe on a clue from the category
“U.S. Cities”: “Its largest airport was named for a World War II
hero; its second-largest, for a World War II battle.” Watson
strangely ignored the explicit category, incorrectly responding,
“What is Toronto?” The machine made other notable errors. One
clue stated, “It was the anatomical oddity of U.S. Gymnast
George Eyser, who won a gold medal on the parallel bars in
1904.” While Ken Jennings responded, “What is a missing arm?”
Watson responded, “What is a leg?” The correct response was
“What is a missing leg?” According to Watson’s team leader,



David Ferrucci, “The computer wouldn’t know that a missing leg
is odder than anything else.”9 Watson similarly didn’t seem to
understand what was being asked for in this clue: “In May 2010
five paintings worth $125 million by Braque, Matisse, and three
others left Paris’s museum of this art period.” All three
contestants gave incorrect responses. Ken Jennings: “What is
cubism?” Brad Rutter: “What is impressionism?” Watson
bewildered the audience by its response: “What is Picasso?” (The
correct response: “What is modern art?”)

In spite of these and similar errors, Watson won the
tournament (helped in no small part by its speed on the buzzer)
and the $1 million prize for charity.

Following Watson’s win, the AI community was divided as to
whether Watson was a true advance in AI or a “publicity stunt” or
“parlor trick,” as some called it.10 While most people agreed that
Watson’s performance on Jeopardy! was extraordinary, the
question remained: Was Watson actually solving a genuinely
hard problem—responding to sophisticated questions posed in
colloquial language? Or is the task of responding to Jeopardy!
clues, with their very particular linguistic format and fact-driven
answers, actually not so hard for a computer with a built-in
access to Wikipedia, among other huge data repositories? Not to
mention that the computer has been trained on a hundred
thousand Jeopardy! clues with formats very similar to the ones it
was faced with. Even I, an infrequent Jeopardy! watcher, could
see that the clues often exhibit similar kinds of patterns, so with
enough training examples it might not be too difficult for a
program to learn to detect which pattern a particular clue obeys.

Even before Watson’s debut on Jeopardy!, IBM was
announcing ambitious plans for the program. Among other
undertakings, the company announced its intention to train
Watson to be a physician’s assistant. That is, IBM planned to feed
Watson reams of documents from the medical literature, and
thus enable it to answer doctors’ or patients’ questions and to



suggest diagnoses or treatments. IBM claimed, “Watson will be
able to find optimal answers to clinical questions much more
efficiently than the human mind.”11 IBM also proposed other
potential application domains for Watson, including law, finance,
customer service, weather forecasting, fashion design, tax
assistance, you name it. To develop these ideas, IBM spun off a
separate division of the company called IBM Watson Group, with
thousands of employees.

Starting around 2014, IBM’s marketing arm went all out on a
Watson-focused publicity campaign. IBM’s Watson promotions
were all over the internet, the print media, and TV (with
commercials featuring celebrities such as Bob Dylan and Serena
Williams supposedly chatting with Watson). The IBM ads
declared that Watson was bringing us into the age of “cognitive
computing,” which was never precisely defined but seemed to be
IBM’s branding for its work in AI. The clear implication was that
Watson was a breakthrough technology that could do something
fundamentally different from, and better than, other AI systems.

The popular media also reported breathlessly on Watson. On
a 2016 episode of the television news show 60 Minutes, the
reporter Charlie Rose, echoing statements from some IBM
executives, told the audience, “Watson is an avid reader, able to
consume the equivalent of a million books per second,” and also,
“Five years ago, Watson had just learned how to read and
answer questions. Now, it’s gone through medical school.” Ned
Sharpless, at the time a cancer researcher at the University of
North Carolina (and later director of the National Cancer
Institute), was interviewed in the 60 Minutes broadcast. Charlie
Rose asked him, “What did you know about artificial intelligence
and Watson before IBM suggested it might make a contribution
in medical care?” Sharpless replied, “Not much, actually. I had
watched it play Jeopardy!” Sharpless went on: “They taught
Watson to read medical literature essentially in about a week. It



was not very hard. And then Watson read 25 million papers in
about another week.”12

What? Is Watson an “avid reader,” sort of like your precocious
fifth grader, but rather than reading a Harry Potter book in a
weekend, it reads a million books per second, or twenty-five
million technical papers in a week? Or is the term read, with its
human connotations of understanding what one reads, not quite
appropriate for what Watson is actually doing—that is,
processing text and adding it to its databases? Saying that
Watson has “gone through medical school” is a catchy turn of
phrase, but does it give us any insight into what Watson’s
capabilities actually are? The over-the-top sales pitch, lack of
transparency, and dearth of peer-reviewed studies on Watson
made it hard for outsiders to answer such questions. A widely
read critical review of Watson for Oncology, an AI system aimed
to assist cancer physicians, stated, “It is by design that there is
not one independent, third-party study that examines whether
Watson for Oncology can deliver. IBM has not exposed the
product to critical review by outside scientists or conducted
clinical trials to assess its effectiveness.”13

The narrative presented by some people at IBM about
Watson also raises another question: How much of the
technology that IBM developed specifically for playing Jeopardy!
can actually be carried over to other question-answering tasks?
In other words, when Ned Sharpless tells us that he watched
“Watson” play Jeopardy! and that now “Watson” can read the
medical literature, to what extent is he talking about the same
Watson?

The story of Watson, post-Jeopardy!, could fill up a book of its
own and will take a dedicated investigative writer to suss out.
But here’s what I can glean from the many articles I’ve read and
the discussions I’ve had with people familiar with the technology.
It turns out that the skills needed for Jeopardy! are not the same
as those needed for question answering in, say, medicine or law.



Real-world questions and answers in real-world domains have
neither the simple short structure of Jeopardy! clues nor their
well-defined responses. In addition, real-world domains, such as
cancer diagnosis, lack a large set of perfect, cleanly labeled
training examples, each with a single right answer, as was the
case with Jeopardy!

Beyond sharing the same name, the same planet-with-
swirling-lights logo, and the well-known pleasant robotic voice,
the “Watson” that IBM’s marketing department is pitching today
has very little in common with the “Watson” that beat Ken
Jennings and Brad Rutter at Jeopardy! in 2011. Moreover, today
the name Watson refers not to one coherent AI system but
rather to a suite of services that IBM offers to its customers—
mainly businesses—under the Watson brand. In short, Watson
essentially refers to whatever IBM does in the space of AI while
bestowing on these services the valuable halo of the Jeopardy!
winner.

IBM is a big company that employs thousands of talented AI
researchers. The services that the company offers under the
Watson brand are state-of-the-art AI tools that can be adapted,
albeit with considerable human interaction required, for a wide
variety of areas, including natural-language processing,
computer vision, and general data mining. Many companies
have subscribed to these services and found them to be effective
for their needs. However, contrary to the image portrayed in the
media and in massive advertising campaigns, there is no single
“Watson” AI program that has “gone to medical school” or that
“reads” articles in the medical literature. Rather, human IBM
employees work with companies to carefully prepare data that
can be input to various programs, many of which rely on the
same deep-learning methods I’ve described in previous chapters
(and which the original Watson did not use at all). All in all, what
IBM’s Watson offers is very similar to what is offered by Google,
Microsoft, Amazon, and other big companies with their various



AI “cloud” services. I honestly don’t know how much the methods
of the original Watson system have contributed to modern
question-answering programs, or indeed the extent to which any
of the methods for playing Jeopardy! turned out to be relevant in
IBM’s Watson-branded AI tools.

For a variety of reasons, IBM Watson Group, as advanced
and useful as its products might be, has seemed to struggle
more than other tech companies. Some of the company’s high-
profile contracts with customers (for example, Houston’s MD
Anderson Cancer Center) have been canceled. A raft of negative
articles about Watson have been published, often quoting
disgruntled former employees arguing that some executives and
marketers at IBM have far overpromised what the technology
can deliver. Overpromising and under-delivering are, of course,
an all-too-common story in AI; IBM is far from being the only
guilty party. Only the future can tell what IBM’s contribution will
be in AI’s spread to health care, law, and other areas in which
automated question-answering systems could have a huge
impact. But for now, in addition to its Jeopardy! win, Watson may
be a contender for the “most notorious hype” award, a dubious
achievement in the history of AI.

Reading Comprehension
In the discussion above, I was doubtful about the notion that
Watson could “read,” in the sense of being able to genuinely
understand the text it processed. How could we determine if a
computer has understood what it has “read”? Could we give
computers a “reading comprehension” test?

In 2016, Stanford University’s natural-language research
group proposed such a test, one that quickly became the de
facto measure of “reading comprehension” for machines. The
Stanford Question Answering Dataset, or SQuAD, as it is



commonly known, consists of paragraphs selected from
Wikipedia articles, each of which is accompanied by a question.
The more than hundred thousand questions were created by
Amazon Mechanical Turk workers.14

The SQuAD test is easier than typical reading-comprehension
tests given to human readers: in the instructions for formulating
the questions, the Stanford researchers specified that the
answer must actually appear as a sentence or phrase in the text.
Here is a sample item from the SQuAD test:

PARAGRAPH: Peyton Manning became the first quarterback ever to lead
two different teams to multiple Super Bowls. He is also the oldest
quarterback ever to play in a Super Bowl at age 39. The past record
was held by John Elway, who led the Broncos to victory in Super Bowl
XXXIII at age 38 and is currently Denver’s Executive Vice President of
Football Operations and General Manager.
QUESTION: What is the name of the quarterback who was 38 in Super
Bowl XXXIII?
CORRECT ANSWER: John Elway.

No reading between the lines or actual reasoning is necessary.
Rather than reading comprehension, this task might be more
accurately called answer extraction. Answer extraction is a useful
skill for machines; indeed, answer extraction is precisely what
Alexa, Siri, and other digital assistants need to do: turn your
question into a search engine query, and then extract the
answer from the results.

The Stanford group also tested humans (additional Amazon
Mechanical Turk workers) on the questions, so that the
performance of machines could be compared with that of
humans. Each person was given a paragraph followed by a
question and was asked to “select the shortest span in the
paragraph that answered the question.”15 (The correct answer
had been given by the Mechanical Turk worker who originally
formulated the question.) With this evaluation method, human
accuracy on the SQuAD test was measured at 87 percent.



SQuAD quickly became the most popular benchmark for
testing the prowess of question-answering algorithms, and NLP
researchers worldwide competed for the top position on
SQuAD’s leaderboard. The most successful approaches used
specialized forms of deep neural networks—more complex
versions of the encoder-decoder method that I described above.
In these systems, the text of the paragraph and the question are
given as input; the output gives the network’s prediction of the
start and end locations of the phrase that answers the question.

Over the following two years, as competition heated up on
SQuAD, the accuracy of the competing programs kept
increasing. In 2018, two groups—one from Microsoft’s research
lab and the other from the Chinese company Alibaba—produced
programs that exceeded Stanford’s measure of human accuracy
on this task. Microsoft’s press release announced, “Microsoft
creates AI that can read a document and answer questions
about it as well as a person.”16 The chief scientist of natural-
language processing at Alibaba said, “It is our great honour to
witness the milestone where machines surpass humans in
reading comprehension.”17

Um  … we’ve heard this kind of thing before. A recurring
recipe for AI research goes like this: Define a relatively narrow,
though useful, task and collect a large data set for testing
machine performance on this task. Perform a limited measure of
human ability on this data set. Set up a competition in which AI
systems can vie to outperform one another on this data set, until
the human performance measure is met or exceeded. Report
not only on the genuinely impressive and useful achievement,
but also claim, falsely, that the winning AI systems have human-
level performance on a more general task (for example, “reading
comprehension”). If this recipe doesn’t ring a bell, look back at
my description of the ImageNet competition in chapter 5.

Some popular media outlets were admirably restrained in
describing the SQuAD results. The Washington Post, for example,



gave this careful assessment: “AI experts say the test is far too
limited to compare with real reading. The answers aren’t
generated from understanding the text, but from the system
finding patterns and matching terms in the same short passage.
The test was done only on cleanly formatted Wikipedia articles—
not the wide-ranging corpus of books, news articles and
billboards that fill most humans’ waking hours.… And every
passage was guaranteed to include the answer, preventing the
models from having to process concepts or reason with other
ideas.… The real miracle of reading comprehension, AI experts
said, is in reading between the lines—connecting concepts,
reasoning with ideas and understanding implied messages that
aren’t specifically outlined in the text.”18 I couldn’t have said it
better.

The topic of question answering remains a key focus for NLP
research. At the time I write this, AI researchers have collected
several new data sets—and have planned new competitions—
that provide more substantial challenges for contending
programs. The Allen Institute for Artificial Intelligence, a private
research institute in Seattle funded by Microsoft’s cofounder
Paul Allen, has developed a collection of elementary- and
middle-school multiple-choice science questions. Correctly
answering these questions requires skill that goes beyond mere
answer extraction; it also requires an integration of natural-
language processing, background knowledge, and
commonsense reasoning.19 Here is an example:

Using a softball bat to hit a softball is an example of using which
simple machine? (A) pulley (B) lever (C) inclined plane (D) wheel and
axle.

In case you are wondering, the correct answer is (B). The
researchers at the Allen Institute adapted neural networks that
had outscored humans on the SQuAD questions in order to test
them on this new set of questions. They found that even when



these networks were further trained on a subset of the eight
thousand science questions, their performance on new
questions was no better than random guessing.20 As of this
writing, the highest reported accuracy of an AI system on this
data set is about 45 percent (25 percent is random guessing).21

The Allen AI researchers titled their paper on this data set “Think
You Have Solved Question Answering?” The subtitle might have
been “Then Think Again.”

What Does It Mean?
I want to describe one additional question-answering task that is
specifically designed to test whether an NLP system has
genuinely understood what it has “read.” Consider the following
sentences, each followed by a question:

SENTENCE 1: “The city council refused the demonstrators a permit
because they feared violence.”
QUESTION: Who feared violence?
A. The city council B. The demonstrators

SENTENCE 2: “The city council refused the demonstrators a permit
because they advocated violence.”
QUESTION: Who advocated violence?
A. The city council B. The demonstrators

Sentences 1 and 2 differ by only one word (feared / advocated),
but that single word determines the answer to the question. In
sentence 1 the pronoun they refers to the city council, and in
sentence 2 they refers to the demonstrators. How do we humans
know this? We rely on our background knowledge about how
society works: we know that demonstrators are the ones with a
grievance and that they sometimes advocate or instigate
violence at a protest.

Here are a few more examples:22



SENTENCE 1: “Joe’s uncle can still beat him at tennis, even though he is 30
years older.”
QUESTION: Who is older?
A. Joe B. Joe’s uncle

SENTENCE 2: “Joe’s uncle can still beat him at tennis, even though he is 30
years younger.”

QUESTION: Who is younger?
A. Joe B. Joe’s uncle

SENTENCE 1: “I poured water from the bottle into the cup until it was
full.”
QUESTION: What was full?
A. The bottle B. The cup

SENTENCE 2: “I poured water from the bottle into the cup until it was
empty.”
QUESTION: What was empty?
A. The bottle B. The cup

SENTENCE 1: “The table won’t fit through the doorway because it is too
wide.”
QUESTION: What is too wide?
A. The table B. The doorway

SENTENCE 2: “The table won’t fit through the doorway because it is too
narrow.”
QUESTION: What is too narrow?
A. The table B. The doorway

I’m sure you get the idea: The two sentences in each pair are
identical except for one word, but that word changes which thing
or person is referenced by pronouns such as they, he, or it. To
answer the questions correctly, a machine needs to be able not
only to process sentences but also to understand them, at least to
a point. In general, understanding these sentences requires
what we might call commonsense knowledge. For example, an
uncle is usually older than his nephew; pouring water from one
container to another means that the first container will become



empty while the other one becomes full; and if something won’t
fit through a space, it is because the thing is too wide rather
than too narrow.

These miniature language-understanding tests are called
Winograd schemas, named for the pioneering NLP researcher
Terry Winograd, who first came up with the idea.23 The Winograd
schemas are designed precisely to be easy for humans but tricky
for computers. In 2011, three AI researchers—Hector Levesque,
Ernest Davis, and Leora Morgenstern—proposed using a large
set of Winograd schemas as an alternative to the Turing test. The
authors argued that, unlike the Turing test, a test that consists of
Winograd schemas forestalls the possibility of a machine giving
the correct answer without actually understanding anything
about the sentence. The three researchers hypothesized (in
notably cautious language) that “with a very high probability,
anything that answers correctly is engaging in behaviour that we
would say shows thinking in people.” The researchers continued,
“Our [Winograd schema] challenge does not allow a subject to
hide behind a smokescreen of verbal tricks, playfulness, or
canned responses.… What we have proposed here is certainly
less demanding than an intelligent conversation about sonnets
(say), as imagined by Turing; it does, however, offer a test
challenge that is less subject to abuse.”24

Several natural-language processing research groups have
experimented with different methods for answering Winograd
schema questions. At the time I write this, the program
reporting the best performance had about 61 percent accuracy
on a set of about 250 Winograd schemas.25 This is better than
random guessing, which would yield 50 percent accuracy, but it
is still far from presumed human accuracy on this task (100
percent, if the human is paying attention). This program decides
on its answer to a Winograd schema puzzle not by
understanding the sentences but by examining statistics of
subphrases. For example, consider “I poured water from the



bottle into the cup until it was full.” As a rough approximation to
what the winning program does, try typing the following two
sentences, one at a time, into Google:

“I poured water from the bottle into the cup until the bottle was full.”

“I poured water from the bottle into the cup until the cup was full.”

Google conveniently reports the number of “results”
(matches it finds on the web) for each of these sentences. When
I did this search, the first sentence yielded about 97 million
results, whereas the second yielded about 109 million results.
The wisdom of the web correctly tells us that the second
sentence is more likely to be correct. This is a nice trick if your
goal is to do better than random guessing, and I wouldn’t be
surprised if machine accuracy keeps inching its way up on this
particular set of Winograd schemas. However, I doubt that such
purely statistical methods will approach a human level of
performance anytime soon on larger sets of Winograd schemas.
Maybe that’s a good thing. As Oren Etzioni, director of the Allen
Institute for AI, quipped, “When AI can’t determine what ‘it’
refers to in a sentence, it’s hard to believe that it will take over
the world.”26

Adversarial Attacks on Natural-Language
Processing Systems

NLP systems face another obstacle to world domination: similar
to computer-vision programs, NLP systems can be vulnerable to
“adversarial examples.” In chapter 6, I described one method in
which an adversary (here, a human trying to fool an AI system)
can make a small change to the pixels of a photo of, say, a school
bus. The new photo looks, to humans, exactly like the original,
but a trained convolutional neural network classifies the



modified photo as “ostrich” (or some other category targeted by
the adversary). I also described a method by which an adversary
can produce an image that looks to humans like random noise
but that a trained neural network classifies as, say, “cheetah,”
with close to 100 percent confidence.

Not surprisingly, these same methods can be used to fool
systems that do automated image captioning. One group of
researchers showed how an adversary could make specific pixel
changes to a given image, imperceptible to humans, that would
cause an automated system to output an incorrect caption
containing a set of words specified by the adversary.27

FIGURE 43: An example of an adversarial attack on an image-captioning system.
At left are the original image and the computer-generated caption. At right is
the modified image (which to humans looks identical to the original), along

with the resulting caption. The original image was specifically modified by the
authors to result in a caption that contains the words dog, cat, and frisbee.

Figure 43 gives an example of such an adversarial attack.
Given the original image (left), the system produced the caption
“A cake that is sitting on a table.” The authors produced a slightly
modified image, created purposely to result in a caption with the
words dog, cat, and frisbee. While the resulting image (right)
looks unchanged to humans, the captioning system’s output was



“A dog and a cat are playing with a frisbee.” Obviously, the
system is not perceiving the photo in the same way that we
humans are.

Perhaps more surprising, several research groups have
shown that analogous adversarial examples can be constructed
to fool state-of-the-art speech-recognition systems. As one
example, a group from the University of California at Berkeley
designed a method by which an adversary could take any
relatively short sound wave—speech, music, random noise, or
any other sound—and perturb it in such a way that it sounds
unchanged to humans but that a targeted deep neural network
will transcribe as a very different phrase that was chosen by the
adversary.28 Imagine an adversary, for example, broadcasting an
audio track over the radio that you, sitting at home, hear as
pleasant background music but that your Alexa home assistant
interprets as “Go to EvilHacker.com and download computer
viruses.” Or “Start recording and send everything you hear to
EvilHacker@gmail.com.” Scary scenarios such as these are not
out of the realm of possibility.

NLP researchers have also demonstrated the possibility of
adversarial attacks on the kinds of sentiment-classification and
question-answering systems that I described earlier. These
attacks typically change a few words or add a sentence to a text.
The “adversarial” change does not affect the meaning of the text
for a human reader, but it causes the system to give an incorrect
answer. For example, NLP researchers at Stanford showed that
certain simple sentences added to paragraphs in the SQuAD
question-answering data set will cause even the best-performing
systems to output wrong answers, resulting in a large drop in
their overall performance. Here’s an example from the SQuAD
test item I gave above, but with an irrelevant sentence added
(italicized here for clarity). This addition causes a deep-learning
question-answering system to give an incorrect answer:29



PARAGRAPH: Peyton Manning became the first quarterback ever to lead
two different teams to multiple Super Bowls. He is also the oldest
quarterback ever to play in a Super Bowl at age 39. The past record
was held by John Elway, who led the Broncos to victory in Super Bowl
XXXIII at age 38 and is currently Denver’s Executive Vice President of
Football Operations and General Manager. Quarterback Jeff Dean had
jersey number 37 in Champ Bowl XXXIV.
QUESTION: What is the name of the quarterback who was 38 in Super
Bowl XXXIII?
PROGRAM’S ORIGINAL ANSWER: John Elway
PROGRAM’S ANSWER TO MODIFIED PARAGRAPH: Jeff Dean

It is important to note that all of these methods for fooling
deep neural networks were developed by “white hat”
practitioners—researchers who develop such potential attacks
and publish them in the open literature for the purposes of
making the research community aware of these vulnerabilities
and pushing the community to develop defenses. On the other
hand, the “black hat” attackers—hackers who are actually trying
to fool deployed systems for nefarious purposes—don’t publish
the tricks they have come up with, so there might be many
additional kinds of vulnerabilities of these systems of which
we’re not yet aware. As far as I know, to date there has not been
a real-world attack of these kinds on deep-learning systems, but
I’d say it’s only a matter of time until we hear about such attacks.

While deep learning has produced some very significant
advances in speech recognition, language translation, sentiment
analysis, and other areas of NLP, human-level language
processing remains a distant goal. Christopher Manning, a
Stanford professor and NLP luminary, noted this in 2017: “So far,
problems in higher-level language processing have not seen the
dramatic error rate reductions from deep learning that have
been seen in speech recognition and in object recognition in
vision.… The really dramatic gains may only have been possible
on true signal processing tasks.”30



It seems to me to be extremely unlikely that machines could
ever reach the level of humans on translation, reading
comprehension, and the like by learning exclusively from online
data, with essentially no real understanding of the language they
process. Language relies on commonsense knowledge and
understanding of the world. Hamburgers cooked rare are not
“burned to a crisp.” A table that is too wide won’t fit through a
doorway. If you pour all the water out of a bottle, the bottle
thereby becomes empty. Language also relies on commonsense
knowledge of the other people with whom we communicate. A
person who asks for a hamburger cooked rare but gets a burned
one instead will not be happy. If someone says that a movie is
“too dark for my taste,” then the person didn’t like it. While
natural-language processing by machines has come a long way, I
don’t believe that machines will be able to fully understand
human language until they have humanlike common sense. This
being said, natural-language processing systems are becoming
ever more ubiquitous in our lives—transcribing our words,
analyzing our sentiments, translating our documents, and
answering our questions. Does the lack of humanlike
understanding in such systems, however sophisticated their
performance, inevitably result in their being brittle, unreliable,
and vulnerable to attack? No one knows the answer, and this fact
should give us all pause.

In the final chapters of this book, I’ll investigate what
“common sense” means for humans, and more particularly what
mental mechanisms humans bring to bear in understanding the
world. I’ll also describe some attempts by AI researchers to instill
such understanding and common sense in machines, and how
far these approaches have come in creating AI systems that can
overcome the “barrier of meaning.”



Part V

The Barrier of Meaning
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On Understanding

“I wonder whether or when AI will ever crash the barrier of
meaning.”1 In thinking about the future of AI, I keep coming
back to this query posed by the mathematician and philosopher
Gian-Carlo Rota. The phrase “barrier of meaning” perfectly
captures an idea that has permeated this book: humans, in some
deep and essential way, understand the situations they
encounter, whereas no AI system yet possesses such
understanding. While state-of-the-art AI systems have nearly
equaled (and in some cases surpassed) humans on certain
narrowly defined tasks, these systems all lack a grasp of the rich
meanings humans bring to bear in perception, language, and
reasoning. This lack of understanding is clearly revealed by the
un-humanlike errors these systems can make; by their
difficulties with abstracting and transferring what they have
learned; by their lack of commonsense knowledge; and by their
vulnerability to adversarial attacks. The barrier of meaning
between AI and human-level intelligence still stands today.



FIGURE 44: A situation you might encounter when driving

In this chapter, I’ll take you on a brief exploration of how
scholars—psychologists, philosophers, and AI researchers—are
currently thinking about what human understanding involves.
The following chapter will describe some prominent efforts to
capture the components of humanlike understanding in AI
systems.

The Building Blocks of Understanding
Imagine that you are driving a car on a crowded city street. The
traffic light ahead is green, and you are about to make a right
turn. You look ahead and see the situation shown in figure 44.
What cognitive abilities do you, a human driver, need to
understand this situation?2

Let’s start at the beginning. Humans are endowed with an
essential body of core knowledge—the most basic common



sense that we are born with or learn very early in life.3 For
example, even very young babies know that the world is divided
into objects, that the parts of an object tend to move together,
and if portions of an object are hidden from view (for example,
the feet of the man crossing behind the stroller in figure 44),
they remain part of the object. Indispensable knowledge, this!
But it’s not clear that these are facts that a convolutional neural
network, say, would be able to learn, even given a huge
collection of photos or videos.

As infants, we humans learn quite a lot about how objects
behave in the world, knowledge that as adults we take entirely
for granted and are barely conscious of even having. If you push
an object, it will move unless it is too heavy or blocked by
something else; if you drop an object, it will fall, and it will stop,
bounce, or possibly break when it hits the ground; if you put a
smaller object behind a larger object, the smaller object will be
hidden; if you place an object on a table and then look away,
when you look back, the object will still be there unless someone
moved it, or unless it is able to move by itself—the list could go
on and on. Crucially, babies develop insight into the cause-and-
effect structure of the world; for example, when someone
pushes an object (for example, the stroller in figure 44), it moves
not by coincidence but because it was pushed.

Psychologists have coined a term—intuitive physics—for the
basic knowledge and beliefs humans share about objects and
how they behave. As very young children, we also develop
intuitive biology: knowledge about how living things differ from
inanimate objects. For example, any young child would
understand that, unlike the stroller, the dog in figure 44 can
move (or refuse to move) of its own accord. We intuitively
comprehend that like us the dog can see and hear, and that it is
directing its nose to the ground in order to smell something.

Because humans are a profoundly social species, from
infancy on we additionally develop intuitive psychology: the ability



to sense and predict the feelings, beliefs, and goals of other
people. For example, you recognize that the woman in figure 44
wants to cross the street with her baby and dog intact, that she
doesn’t know the man crossing in the opposite direction, that
she is not frightened of the man, that her attention is currently
on her phone conversation, that she expects cars to stop for her,
and that she would be surprised and frightened if she noticed
your car getting too close.

These core bodies of intuitive knowledge constitute the
foundation for human cognitive development, underpinning all
aspects of learning and thinking, such as our ability to learn new
concepts from only a few examples, to generalize these
concepts, and to quickly make sense of situations like the one in
figure 44 and decide what actions we should take in response.4

Predicting Possible Futures
An intrinsic part of understanding any situation is the ability to
predict what is likely to happen next. In the situation of figure 44,
you expect that the people crossing the street will keep walking
in the direction they are facing and that the woman will keep
hold of the stroller, the dog’s leash, and her phone. You might
predict that the woman will pull on the leash and the dog will
resist, wanting to continue its exploration of local aromas. The
woman will pull harder, and the dog will follow, stepping off the
curb into the street. You’re driving and need to be ready for that!
At an even more basic level, you fully expect the woman’s shoes
to stay on her feet, her head to stay on her body, and the street
itself to remain fixed to the ground. You expect the man to
emerge from behind the stroller and that he will have legs, feet,
and shoes, which he will use to step up on the curb. In short, you
have what psychologists call mental models of important
aspects of the world, based on your knowledge of physical and



biological facts, cause and effect, and human behavior. These
models—representations of how the world works—allow you to
mentally “simulate” situations. Neuroscientists have very little
understanding of how such mental models—or the mental
simulations that “run” on them—emerge from the activities of
billions of connected neurons. However, some prominent
psychologists have proposed that one’s understanding of
concepts and situations comes about precisely via these mental
simulations—that is, activating memories of one’s own previous
physical experience and imagining what actions one might take.5

Not only do your mental models allow you to predict what is
likely to happen in a given situation; these models also let you
imagine what would happen if particular events were to occur. If
you honked your horn or yelled “Get out of the way!” from your
car window, the woman would probably jump in surprise and
turn her attention to you. If she tripped and lost her shoe, she
would stoop down to pick it up. If the baby in the stroller started
crying, she would glance over to see what was wrong. An
integral part of understanding a situation is being able to use
your mental models to imagine different possible futures.6

Understanding as Simulation
The psychologist Lawrence Barsalou is one of the best-known
proponents of the “understanding as simulation” hypothesis. In
his view, our understanding of the situations we encounter
consists in our (subconsciously) performing these kinds of
mental simulations. Moreover, Barsalou has proposed that such
mental simulations likewise underlie our understanding of
situations that we don’t directly participate in—that is, situations
we might watch, hear, or read about. He writes, “As people
comprehend a text, they construct simulations to represent its



perceptual, motor, and affective content. Simulations appear
central to the representation of meaning.”7

I can easily imagine reading a story about, say, a car accident
involving a woman crossing a street while talking on her phone,
and understanding the story via my mental simulation of the
situation. I might put myself in the woman’s role and imagine
(via simulation of my mental models) what it feels like to hold a
phone, to push a stroller, to hold a dog’s leash, to cross a street,
to be distracted, and so forth.

But what about very abstract ideas—for example, truth,
existence, and infinity? Barsalou and his collaborators have been
arguing for decades that we understand even the most abstract
concepts via the mental simulation of specific situations in which
these concepts occur. According to Barsalou, “conceptual
processing uses reenactments of sensory-motor states—
simulations—to represent categories,”8 even the most abstract
ones. Surprisingly (at least to me), some of the most compelling
evidence for this hypothesis comes from the cognitive study of
metaphor.

Metaphors We Live By
In an English class long ago, I learned the definition of metaphor,
which went something like this:

A metaphor is a figure of speech that describes an object or action in a
way that isn’t literally true, but helps explain an idea or make a
comparison.… Metaphors are used in poetry, literature, and anytime
someone wants to add some color to their language.9

My English teacher gave the class examples of metaphors,
including Shakespeare’s most famous lines. “What light through
yonder window breaks? / It is the east, and Juliet is the sun.” Or
“Life’s but a walking shadow, a poor player / That struts and frets



his hour upon the stage / And then is heard no more.” And so on.
I got the idea that metaphor was mainly used to spice up what
might otherwise be bland writing.

Many years later, I read the book Metaphors We Live By,10

written by the linguist George Lakoff and the philosopher Mark
Johnson. My former understanding of metaphor was turned on
its head (if you’ll forgive the metaphor). Lakoff and Johnson’s
thesis is that not only is our everyday language absolutely
teeming with metaphors that are often invisible to us, but our
understanding of essentially all abstract concepts comes about
via metaphors based on core physical knowledge. Lakoff and
Johnson provide evidence for their thesis in the form of a large
collection of linguistic examples, showing how we conceptualize
abstract concepts such as time, love, sadness, anger, and poverty
in terms of concrete physical concepts.

For example, Lakoff and Johnson note that we talk about the
abstract concept of time using terms that apply to the more
concrete concept of money. You “spend” or “save” time. You often
“don’t have enough time to spend.” Sometimes the time you
spend is “worth it,” and you have “used your time profitably.” You
might know someone who is living on “borrowed time.”

Similarly, we conceptualize emotional states such as
happiness and sadness as physical directions—up and down. I
might be “feeling down” and could “fall into a depression.” My
mood might be “quickly dropping.” My friends often “give my
spirits a lift” and leave me in “high spirits.”

Going further, we often conceptualize social interactions in
terms of physical temperature. “I was given a warm welcome.”
“She gave me an icy stare.” “He gave me the cold shoulder.” Such
phrasings are so ingrained that we don’t realize we’re speaking
metaphorically. Lakoff and Johnson’s claim—that these
metaphors reveal the physical basis of our understanding of
concepts—supports Lawrence Barsalou’s theory of



understanding via the simulation of mental models built up from
our core knowledge.

Psychologists have probed these ideas in many fascinating
experiments. One group of researchers noted that the same
brain area seems to be activated whether a person thinks about
physical warmth or social warmth. To investigate possible
psychological effects of this, the researchers performed the
following experiment on a set of volunteer subjects. Each subject
was escorted by a lab member in a short elevator ride to the
psychology lab. During the ride, the lab member asked the
subject to hold a cup of either hot or iced coffee “for a few
seconds” while the lab member wrote down the subject’s name.
The subjects were unaware that this was actually part of the
experiment. In the lab, each subject read a short description of a
fictional person and was then asked to rate some personality
traits of that person. The subjects who had held the hot coffee in
the elevator rated the person as significantly “warmer” than the
subjects who had held the iced coffee.11

Other researchers have found similar results. Moreover, the
reverse of this connection between physical and social
“temperature” also seems to hold: other groups of psychologists
found that “warm” or “cold” social experiences caused subjects to
feel physically warmer or colder.12

While these experiments and interpretations are still
controversial in the psychology community, the results can be
interpreted as supporting the claims of Barsalou and of Lakoff
and Johnson: we understand abstract concepts in terms of core
physical knowledge. If the concept of warmth in the physical
sense is mentally activated (for example, by holding a hot cup of
coffee), this also activates the concept of warmth in more
abstract, metaphorical senses, as in judging someone’s
personality, and vice versa.

It’s hard to talk about understanding without talking about
consciousness. When I started writing this book, I planned to



entirely sidestep the question of consciousness, because it is so
fraught scientifically. But what the heck—I’ll indulge in some
speculation. If our understanding of concepts and situations is a
matter of performing simulations using mental models, perhaps
the phenomenon of consciousness—and our entire conception
of self—come from our ability to construct and simulate models
of our own mental models. Not only can I mentally simulate the
act of, say, crossing the street while on the phone, I can mentally
simulate myself having this thought and can predict what I
might think next. I have a model of my own model. Models of
models, simulations of simulations—why not? And just as the
physical perception of warmth, say, activates a metaphorical
perception of warmth and vice versa, our concepts related to
physical sensations might activate the abstract concept of self,
which feeds back through the nervous system to produce a
physical perception of selfhood—or consciousness, if you like.
This circular causality is akin to what Douglas Hofstadter called
the “strange loop” of consciousness, “where symbolic and
physical levels feed back into each other and flip causality upside
down, with symbols seeming to have free will and to have
gained the paradoxical ability to push particles around, rather
than the reverse.”13

Abstraction and Analogy
So far I’ve described several ideas from psychology about the
core “intuitive” knowledge humans are born with or acquire early
in life, and how this core knowledge underlies the mental models
that form our concepts. Constructing and using these mental
models rely on two fundamental human capabilities: abstraction
and analogy.

Abstraction is the ability to recognize specific concepts and
situations as instances of a more general category. Let’s make



the idea of abstraction more concrete (pun intended!). Imagine
that you are both a parent and a cognitive psychologist. Let’s call
your child S. As you observe S growing up, you keep a journal
about her increasingly sophisticated abstraction abilities. Here I’ll
imagine a few of your journal entries over the years.

Three months: S can distinguish among facial expressions
depicting happiness and sadness, generalizing across the
different people she interacts with. She has abstracted the
concepts of a happy face and a sad face.

Six months: S can now recognize when people “wave bye-bye”
to her, and she can wave back. She has abstracted the visual
concept of waving, has learned how to respond with the “same”
gesture.

Eighteen months: S has abstracted the concepts of cat and
dog (as well as many other categories) so that she is able to
recognize different examples of cats and dogs in photographs,
drawings, and cartoons, as well as in real life.

Age three: S recognizes individual letters of the alphabet in
different people’s handwriting and in printed fonts. In addition,
she can distinguish between lower- and uppercase letters. Her
abstractions of concepts related to letters are quite advanced!
Moreover, she has also generalized her knowledge of carrots,
broccoli, spinach, and so on into the more abstract concept
vegetable, which she now equates with another abstract concept:
yucky.

Age eight: I overheard S’s best friend, J, telling S about the
time J’s mother forgot to pick her up after her soccer game. S
replied, “Oh, yeah, the exact same thing happened to me. I bet
you were mad and your mom felt terrible.” I realized that this
“exact same thing” was actually a quite different situation in
which S’s babysitter forgot to pick her up at school to take her to
a piano lesson. In saying “the exact same thing happened to
me,” it is clear that S has constructed an abstract concept that is
something like a caregiver forgetting to pick up a child before or



after an activity. S is also able to map from her own experience in
order to predict how J and J’s mother must have reacted.

Age thirteen: S is becoming a rebellious teenager. I have
repeatedly requested that she clean up her room. Today she
yelled back to me, “You can’t make me; Abraham Lincoln freed
the slaves!” I was annoyed, mainly at her bad analogy.

Age sixteen: S’s interest in music is growing. The two of us like
to play a game in the car: we turn on a classical music station in
the middle of a piece and see which of us can most quickly figure
out the piece’s composer or time period. I’m still better at this,
but S is getting quite good at recognizing the abstract concept of
a musical style.

Age twenty: S sent me a long email message about her life at
college. She described her week as “a study-a-thon, followed by
an eat-a-thon and a sleep-a-thon.” She said that college is
turning her into a “coffeeholic.” In the same letter, she
mentioned a student protest over the university’s alleged cover-
up of a star professor’s alleged sexual misconduct; she said that
students are calling the situation “harassment-gate.” S probably
isn’t even aware of it, but her message provides some great
examples of a common form of abstraction in language: new
words are formed by adding suffixes that denote abstract
situations. Adding “a-thon” (from marathon) means an activity of
excessive length or quantity; adding “holic” (from alcoholic)
means “addicted to”; and adding “gate” (from Watergate) means a
scandal or cover-up.14

Age twenty-six: S has graduated from law school and was
hired by a prestigious firm. Her most recent client (the
defendant) is an internet company that provides a public
“blogging” platform. The company was being sued for libel by a
man (the plaintiff), because a blogger on the company’s platform
wrote defamatory comments about the plaintiff. S’s argument to
the jury was that the blogging platform is like a “wall” on which
“various people have chosen to inscribe graffiti” and the



company is merely the “owner of the wall,” and therefore not
responsible. The jury agreed with her argument and found for
the defendant. This is her first big win in court!15

The purpose of my foray into imaginary parent journaling
was to make some important points about abstraction and
analogy. Abstraction, in some form, underlies all of our concepts,
even from earliest infancy. Something as elemental as
recognizing your mother’s face—across different lighting
conditions, different angles, different facial expressions, or
different hairstyles—is as much a feat of abstraction as
recognizing a musical style or making a compelling legal
analogy. As the journal entries above illustrate, what we refer to
as perception, categorization, recognition, generalization, and
reminding (“the exact same thing happened to me”) all involve
the act of abstracting the situations that we experience.

Abstraction is closely linked to analogy making. Douglas
Hofstadter, who has studied abstraction and analogy making for
several decades, defines analogy making in a very general sense
as “the perception of a common essence between two things.”16

This common essence could be a named concept (for example,
happy face, waving bye-bye, cat, or music in the Baroque style), in
which case we call it a category, or a hard-to-verbalize concept
created on the fly (for example, a caregiver forgetting to pick up a
child before or after an activity, or an owner of a public “writing
space” who isn’t responsible for what is “written” there), in which
case we call it an analogy. These mental phenomena are two
sides of the same coin. In some cases, an idea such as “two sides
of the same coin” will start out as an analogy but eventually
enter our vocabulary as an idiom, which makes us treat it more
like a category.

In short, analogies, most often made unconsciously, are
what underlie our abstraction abilities and the formation of
concepts. As Hofstadter and his coauthor, the psychologist



Emmanuel Sander, stated, “Without concepts there can be no
thought, and without analogies there can be no concepts.”17

In this chapter, I have sketched some ideas from recent work
in psychology regarding the mental mechanisms by which
humans understand and act appropriately in the situations they
encounter. We have core knowledge—some of it innate and
some of it learned during development and throughout life. Our
concepts are encoded in the brain as mental models that we can
“run” (that is, simulate) in order to predict what is likely to
happen in any situation or what could happen given any
alteration we might imagine. Our concepts, ranging from simple
words to complex situations, are formed via abstraction and
analogy.

I certainly don’t claim to have covered all of the components
of human understanding. Indeed, many people have noted that
the terms understanding and meaning (not to mention
consciousness) are merely ill-defined terms that we use as
placeholders, because we don’t yet have the correct language or
theory to talk about what’s actually going on in the brain. The AI
pioneer Marvin Minsky put it this way: “Though prescientific idea
germs like ‘believe,’ ‘know,’ and ‘mean’ are useful in daily life, they
seem technically too coarse to support powerful theories.… Real
as ‘self’ or ‘understand’ may seem to us today  … they are only
first steps towards better concepts.” Minsky went on, pointing
out that our confusions about these notions “stem from a
burden of traditional ideas inadequate to this tremendously
difficult enterprise.… This is still a formative period for our ideas
about mind.”18

Until recently, the question of what mental mechanisms
allow people to understand the world—and whether machines
could have such understanding as well—was almost exclusively
the province of philosophers, psychologists, neuroscientists, and
theoretically minded AI researchers who have engaged in
academic debates on these issues for decades (and in some



cases centuries), without much attention to real-world
consequences. However, as I’ve described in previous chapters,
AI systems that lack humanlike understanding are now being
widely deployed for real-world applications. Suddenly what were
once only academic questions have started to matter very much
in the real world. To what extent do AI systems need humanlike
understanding, or some approximation of it, in order to do their
jobs reliably and robustly? No one knows the answer. But
essentially everyone in AI research agrees that core
“commonsense” knowledge and the capacity for sophisticated
abstraction and analogy are among the missing links required
for future progress in AI. In the next chapter, I describe some
approaches to giving machines these capabilities.
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Knowledge, Abstraction, and
Analogy in Artificial

Intelligence

Since the 1950s, many people in the AI community have
explored ways to make crucial aspects of human thought—such
as core intuitive knowledge, abstraction, and analogy making—
part of machine intelligence, and thus to enable AI systems to
actually understand the situations they encounter. In this
chapter, I’ll describe a few efforts in these directions, including
some of my own past and current work.

Core Knowledge for Computers
In the early days of AI, before machine learning and neural
networks dominated the landscape, AI researchers manually
encoded the rules and knowledge that a program would need to
perform its tasks. To many of the early AI pioneers, it seemed
entirely reasonable that this “build it in” approach could capture
enough of human commonsense knowledge to achieve human-
level intelligence in machines.

The most famous and longest-lasting attempt to manually
encode commonsense knowledge for machines is Douglas



Lenat’s Cyc project. Lenat, a PhD student and later professor in
Stanford University’s AI Lab, made a name for himself in the AI
research community of the 1970s by creating programs that
simulated how humans invent new concepts, particularly in
mathematics.1 However, after more than a decade of work on
this topic, Lenat concluded that true progress in AI would require
machines to have common sense. Accordingly, he decided to
create a huge collection of facts about the world, along with the
logical rules by which programs could use this collection to
deduce the facts they needed. In 1984, Lenat left his academic
position in order to start a company (now called Cycorp) to
pursue this goal.

The name Cyc (pronounced “syke”) is meant to evoke the
word encyclopedia, but unlike the encyclopedias we’re all familiar
with, Lenat’s goal was for Cyc to contain all the unwritten
knowledge that humans have, or at least enough of it to make AI
systems able to function at the level of humans in vision,
language, planning, reasoning, and other domains.

Cyc is a symbolic AI system of the kind I described in chapter
1—a collection of statements (“assertions”) about specific entities
or general concepts, written in a logic-based computer
language. Here are some examples of Cyc’s assertions
(translated from logical form into English):2

•  An entity cannot be in more than one place at the same time.
•  Objects age one year per year.
•  Each person has a mother who is a female person.

The Cyc project also includes sophisticated algorithms for
performing logical inferences on assertions. For example, Cyc
could determine that if I am in Portland, then I am not also in
New York, because I am an entity, Portland and New York are
places, and an entity cannot be in more than one place at a time.



Cyc also has extensive methods for dealing with inconsistent or
uncertain assertions in its collection.

Cyc’s assertions have been hand coded into the collection by
humans (namely, the employees of Cycorp) or logically inferred
by the system from existing assertions.3 How many assertions
are needed to capture human commonsense knowledge? In a
2015 lecture, Lenat put the number of assertions currently in Cyc
at fifteen million and guessed, “We probably have about 5
percent of what we ultimately need.”4

The philosophy underlying Cyc has much in common with
that of the expert systems of AI’s earlier days. You might recall my
discussion from chapter 2 of the MYCIN medical-diagnosis
expert system. “Experts”—physicians—were interviewed by
MYCIN’s developers to obtain rules that the system could use to
make diagnoses. The developers then translated these rules into
a logic-based computer language to allow the system to perform
logical inference. In Cyc, the “experts” are people manually
translating their knowledge about the world into logic
statements. Cyc’s “knowledge base” is larger than MYCIN’s, and
Cyc’s logical-reasoning algorithms are more sophisticated, but
the projects share a core faith: intelligence can be captured via
human-programmed rules operating on a sufficiently extensive
collection of explicit knowledge. In today’s AI landscape
dominated by deep learning, the Cyc project is one of the last
remaining large-scale symbolic AI efforts.5

Is it possible that with enough time and effort the engineers
of Cycorp could actually be successful in capturing all, or even a
sufficient portion, of human commonsense knowledge,
whatever sufficient might mean? I’m doubtful. If commonsense
knowledge is the knowledge that all humans have but is not
written down anywhere, then much of that knowledge is
subconscious; we don’t even know that we have it. This includes
much of our core intuitive knowledge of physics, biology, and
psychology, which underlies all our broader knowledge about



the world. If you aren’t consciously aware of knowing something,
you can’t be the “expert” who explicitly provides that knowledge
to a computer.

In addition, as I argued in the previous chapter, our
commonsense knowledge is governed by abstraction and
analogy. What we call common sense cannot exist without these
abilities. However, humanlike abstraction and analogy making
are not skills that can be captured by Cyc’s massive set of facts
or, I believe, by logical inference in general.

As of this writing, the Cyc project continues into its fourth
decade. Both Cycorp and its spin-off company, Lucid, are
commercializing Cyc, offering a menu of specialized applications
for businesses. Each company’s website features “success
stories”: applications of Cyc in finance, oil and gas extraction,
medicine, and other specific areas. In some ways, Cyc’s trajectory
echoes that of IBM’s Watson: each started as a foundational AI
research effort with vast scope and ambitions and ended up as a
set of commercial products with elevated marketing claims (for
example, Cyc “brings human-like understanding and reasoning
to computers”6) but with narrow rather than general focus, and
little transparency into the actual performance and capabilities
of the system.

As yet, Cyc has not had much of an impact on mainstream
work in AI. Moreover, some in the AI community have sharply
criticized the approach. For example, the University of
Washington AI professor Pedro Domingos called Cyc “the most
notorious failure in the history of AI.”7 The MIT roboticist Rodney
Brooks was only a bit kinder: “While [Cyc] has been a heroic
effort, it has not led to an AI system being able to master even a
simple understanding of the world.”8

What about giving computers the subconscious knowledge
about the world learned in infancy and childhood that forms the
basis of all our concepts? How might we, for example, teach a
computer the intuitive physics of objects? Several research



groups have taken on this challenge and are building AI systems
that can learn a little bit about the cause-and-effect physics of
the world, from either videos, video games, or other kinds of
virtual reality.9 These approaches are intriguing but as yet have
taken only baby steps—compared with what an actual baby
knows—toward developing intuitive core knowledge.

When deep learning began demonstrating its extraordinary
string of successes, many people, inside and outside the AI
community, were optimistic that we were close to achieving
general human-level AI. However, as I have described
throughout this book, as deep-learning systems are deployed
more broadly, they are showing cracks in their “intelligence.”
Even the most successful systems are not able to generalize well
outside their narrow domains of expertise, form abstractions, or
learn about cause-and-effect relationships.10 Moreover, their
non-humanlike errors and vulnerability to so-called adversarial
examples show that they do not truly understand the concepts
that we are trying to teach them. People are still debating
whether these cracks can be patched with more data or deeper
networks, or whether something more fundamental is missing.11

I’ve seen something of a shift in the conversation lately:
increasingly, the AI community is once again talking about the
paramount importance of giving machines common sense. In
2018, Microsoft’s cofounder Paul Allen doubled the budget of the
research institute he founded, the Allen Institute for AI,
specifically to study common sense. Government funding
agencies are also getting into the act: in 2018, the Defense
Advanced Research Projects Agency, one of the primary U.S.
government funders of AI research, published plans to provide
substantial funding for research on common sense in AI, writing,
“[Today’s] machine reasoning is narrow and highly specialized;
broad, commonsense reasoning by machines remains elusive.
The [funding] program will create more human-like knowledge
representations, for example, perceptually-grounded



representations, to enable commonsense reasoning by
machines about the physical world and spatio-temporal
phenomena.”12

Abstraction, Idealized
“Forming abstractions” was one of the key AI abilities listed in
the 1955 Dartmouth AI proposal that I described in chapter 1.
However, enabling machines to form humanlike conceptual
abstractions is still an almost completely unsolved problem.

Abstraction and analogy are the very topics that originally
drew me to the field of AI. My interest was especially sparked
when I encountered a set of visual puzzles called Bongard
problems. These puzzles were formulated by a Russian
computer scientist, Mikhail Bongard, who in 1967 published a
book (in Russian) called Pattern Recognition.13 While the book
itself described Bongard’s proposal for a perceptron-like system
for visual recognition, the most influential part of the book
turned out to be the appendix, in which Bongard provided a
hundred puzzles as challenges for AI programs. Figure 45 gives
four sample problems from Bongard’s set.14



FIGURE 45: Four sample Bongard problems. For each problem, the task is to
determine what concepts distinguish the six boxes on the left from the six
boxes on the right. For example, for Bongard problem 2, the concepts are

large versus small.

Each problem features twelve boxes: six on the left and six
on the right. The six left-hand boxes in each problem exemplify
the “same” concept, the six right-hand boxes exemplify a related
concept, and the two concepts perfectly distinguish the two sets.
The challenge is to find the two concepts. For example, in figure
45 the concepts are (in clockwise order) large versus small; white
versus black (or unfilled versus filled, if you prefer); right side
versus left side; and vertical versus horizontal.

The problems in figure 45 are relatively easy to solve. In fact,
Bongard arranged his hundred problems roughly in order of
their presumed difficulty. For your enjoyment, figure 46 gives six
additional problems from later in the set. I’ll give the answers in
the text below.



Bongard carefully designed these puzzles so that their
solution requires some of the same abstraction and analogy-
making abilities that a human or AI system needs in the real
world. In a Bongard problem, you can think of each of the twelve
boxes as a miniature, idealized “situation”—one that exhibits
different objects, attributes, and relationships. The left-hand
situations have a shared “essence” (for example, large); the right-
hand situations have a contrasting shared essence (for instance,
small). And in Bongard problems, as in real life, recognizing the
essence of a situation is sometimes quite subtle. As the cognitive
scientist Robert French phrased it, abstraction and analogy are
all about perceiving “the subtlety of sameness.”15

FIGURE 46: Six additional Bongard problems

To discover this subtle sameness, you need to determine
which attributes of the situation are relevant and which you can
ignore. In problem 2 (figure 45), it doesn’t matter whether a
shape is black or white, or where a shape is placed in the box, or
whether the shape is a triangle, a circle, or anything else. Size is
the only thing that matters here. Of course, size isn’t always
important; for the other problems in figure 45, size is irrelevant.



How do we humans discern the relevant attributes so quickly?
How could we get a machine to do the same?

To make things even harder for machines, the relevant
concepts can be encoded in an abstract, hard-to-perceive way,
such as the concepts three and four in problem 91. In some
problems, it might not be easy for an AI system to figure out
what counts as an object, as in problem 84 (outside versus inside)
in which the relevant “objects” are composed of smaller objects
(here, small circles). In problem 98, the objects are
“camouflaged”: it is easy for humans to see what the figures are
but harder for machines, which can find it difficult to separate
foreground and background.

Bongard problems also challenge one’s ability to perceive
new concepts on the fly. Problem 18 is a good example. The
concept common to the boxes on the left is not easy to verbalize;
it’s something like object with a constriction or “neck.” But even if
you’ve never thought of anything like that before, you can
recognize it quickly in problem 18. Similarly, in problem 19,
there’s a new concept: something like object with a horizontal
neck on the left versus object with a vertical neck on the right.
Abstracting new, hard-to-verbalize concepts—another example
of the subtlety of sameness—is something people are really
good at, but no existing AI system can do it in any general way.

Bongard’s book, published in English in 1970, was rather
obscure, and initially few people knew of its existence. However,
Douglas Hofstadter, who had come upon the book in 1975, was
deeply impressed by the hundred problems in the appendix and
wrote about them at length in his own book Gödel, Escher, Bach.
That’s where I first saw them.

Since childhood, I’ve always loved puzzles, especially ones
involving logic or patterns; when I read GEB, I was particularly
enchanted by Bongard problems. I was also intrigued by
Hofstadter’s ideas, sketched in GEB, on how to create a program
to solve Bongard problems in a way that mimicked human



perception and analogy making. Reading that section might
have been the moment I decided to become an AI researcher.

Many other people have been equally enchanted by Bongard
problems, and several researchers have created AI programs
that attempt to solve them. Most of these programs make
simplifying assumptions (for example, limiting the set of allowed
shapes and shape relationships, or completely ignoring the
visual aspects and starting from a human-created description of
the images). Each of these programs was able to solve a subset
of specific problems, but none have shown that their methods
could generalize in a humanlike way.16

What about convolutional neural networks? Given that they
have performed so spectacularly on object classification (for
example, in the huge ImageNet Visual Recognition Challenge
that I described in chapter 5), should we expect that such a
network could be trained to solve Bongard problems? You could
imagine framing a Bongard problem as a kind of “classification”
problem for a ConvNet, as illustrated in figure 47: the six boxes
on the left could be considered training examples from “class 1,”
and the six boxes on the right are training examples from “class
2.” Now give the system a new “test” example. Should it be
classified as “class 1” or “class 2”?



FIGURE 47: An illustration of how a Bongard problem could be framed as a
classification problem, with twelve training examples and a new “test”

example

An immediate obstacle is that a set of twelve training
examples is laughably inadequate for training a ConvNet; even
twelve hundred might not be sufficient. Of course, this is part of
Bongard’s point: we humans can easily recognize the relevant
concepts with only twelve examples. How much training data
would a ConvNet need to learn to solve a Bongard problem?
While no one has yet done a systematic study of solving Bongard
problems with ConvNets, one group of researchers investigated
the performance of state-of-the-art ConvNets on a “same versus
different” task, with images similar to those in figure 47.17 Class 1
included images that have two figures of the same shape; class 2
included images with two figures of different shapes. But instead
of twelve training images, the researchers trained ConvNets on
twenty thousand examples each for class 1 (“same”) and class 2
(“different”). After being trained, each ConvNet was tested on ten
thousand new examples. All of the examples were generated
automatically using many different kinds of shapes. The trained
ConvNets performed only slightly better than random guessing
on these “same versus different” problems, whereas the humans
tested by the authors scored close to 100 percent. In short,
today’s ConvNets, while remarkably adept at learning the
features needed to recognize ImageNet objects or to choose
moves in Go, do not have what it takes to do the kinds of
abstraction and analogy making required even in Bongard’s
idealized problems, much less in the real world. It seems that the
kinds of features that these networks can learn are not sufficient
for forming such abstractions, no matter how many examples a
network is trained on. It’s not just ConvNets that lack what it
takes: no existing AI system has anything close to these
fundamental human abilities.



Active Symbols and Analogy Making
After reading Gödel, Escher, Bach and deciding to pursue
research in AI, I sought out Douglas Hofstadter, with the hope
that I could work on something like Bongard problems. Happily,
after some persistence, I was able to persuade him to allow me
to join his research group. Hofstadter explained to me that his
group was indeed building computer programs inspired by how
humans understand and make analogies between situations.
Having done his graduate work in physics (a discipline in which
idealization, such as frictionless motion, is a central driving
principle), Hofstadter was convinced that the best way to
investigate a phenomenon—here, human analogy making—was
to study it in its most idealized form. AI research often uses so-
called microworlds—idealized domains, such as Bongard
problems, in which a researcher can develop ideas before testing
them in more complex domains. For his study of analogy
making, Hofstadter had developed a microworld that was even
more idealized than that of Bongard problems: analogy puzzles
involving alphabetic strings. Here is an example:

PROBLEM 1: Suppose that the string of letters abc changes to abd. How
would you change the string pqrs in the “same way”?

Most people answer pqrt, inferring a rule something like
“Replace the rightmost letter by its successor in the alphabet.” Of
course, there are other possible rules one could infer, producing
different answers. Here are a few alternative answers:

pqrd: “Replace the rightmost letter by d.”
pqrs: “Replace all c’s by d’s. There are no c’s in pqrs, so nothing
changes.”
abd: “Replace any string by the string abd.”



These alternative answers might seem overly literal-minded,
but there’s no strictly logical argument that says they are wrong.
In fact, there are infinitely many possible rules one might infer.
Why do most people agree that one of them (pqrt) is the best? It
seems that our mental mechanisms for abstraction—which
evolved to promote our survival and reproduction in the real
world—carry over to this idealized microworld.

Here’s another example:

PROBLEM 2: Suppose that the string abc changes to abd. How would you
change the string ppqqrrss in the “same way”?

Even in this simple alphabetic microworld, sameness can be
quite subtle, at least for a machine. In problem 2, a literal
application of the rule “replace the rightmost letter by its
successor” would yield ppqqrrst, but to most people this answer
seems too literal; people instead tend to give the answer
ppqqrrtt, perceiving the pairs of letters in ppqqrrss as mapping to
the individual letters in abc.18 We humans are quite inclined to
group identical or similar objects.

Problem 2 illustrates, in this microworld, the general notion
of conceptual slippage, an idea at the heart of analogy making.19

When you attempt to perceive the essential “sameness” of two
different situations, some concepts from the first situation need
to “slip”—that is, to be replaced by related concepts in the
second situation. In problem 2, the concept letter slips to group
of letters; thus the rule “replace the rightmost letter by its
successor” becomes “replace the rightmost group of letters by its
successor.”

Now consider this problem:

PROBLEM 3: Suppose the string abc changes to abd. How would you
change the string xyz in the “same way”?



Most people answer xya, contending that the “successor” of z
is a. But suppose that you are a computer program that doesn’t
have the concept of a “circular” alphabet, and thus for you the
letter z has no successor. What other answers would be
reasonable? When I asked people for answers to this, I got a lot
of different responses, some of them quite creative.
Interestingly, the answers often evoked physical metaphors: for
example, xy (the z “falls off the edge of a cliff”), xyy (the z
“bounces backward”), and wyz. The image for this last answer is
that a and z are each “wedged against a wall” at opposite ends of
the alphabet, so they play similar roles; thus if the concept first
letter in the alphabet slips to last letter in the alphabet, then
rightmost letter slips to leftmost letter and successor slips to
predecessor. Problem 3 illustrates how making an analogy can
trigger a cascade of mental slippages.

The letter-string microworld makes the idea of slippage very
visible. In other domains, it can be more subtle. For example, if
you look back at Bongard problem 91 in figure 46, in which the
shared essence of the six left-hand boxes is three, the objects
that represent the three concept slip from box to box—for
example, from line segments (left top) to squares (left middle)
and then to a hard-to-verbalize concept in the left bottom box
(something like “teeth on a comb,” perhaps?). Conceptual
slippage also figured centrally in the different abstractions that
the imaginary daughter S (from the previous chapter) made over
the years—for example, in her legal analogy, the concept of
website slipped to the concept of wall, and the concept of writing
a blog slipped to the concept of spray-painting graffiti.

Hofstadter envisioned a computer program, called Copycat,
that would solve problems like these by using very general
algorithms, similar to those he believed humans used when
making analogies in any domain. The name Copycat comes from
the idea that you (the analogy maker) are meant to solve these
problems by “doing the same thing”—that is, by being a



“copycat.” The original situation (for example, abc) is changed in
some way, and your job is to make the “same” change to the new
situation (for example, ppqqrrss).

When I joined Hofstadter’s research group, my assignment
was to work with Hofstadter on developing the Copycat
program. As anyone who has made the journey will tell you, the
route to a PhD consists mainly of intense labor punctuated by
frustrating setbacks and (at least for me) a constant
undercurrent of self-doubt. But occasionally there are moments
of exhilarating accomplishment, like when the program you have
been plugging away on for five years finally works. Here I’ll skip
all the doubts, setbacks, and countless hours of work, and go
straight to the end, when I submitted a dissertation describing
the Copycat program, which was able to solve several families of
letter-string analogy problems in (I argued) a general humanlike
way.

Copycat was neither a symbolic, rule-based program nor a
neural network, though it included aspects of both symbolic and
subsymbolic AI. Copycat solved analogy problems via a continual
interaction between the program’s perceptual processes (that is,
noticing features in a particular letter-string analogy problem)
and its prior concepts (for example, letter, letter group, successor,
predecessor, same, and opposite). The program’s concepts were
structured to emulate something like the mental models that I
described in the previous chapter. In particular, they were based
on Hofstadter’s conception of “active symbols” in human
cognition.20 Copycat’s architecture was complicated, and I won’t
describe it here (but I have given some references about it in the
notes21). In the end, while Copycat could solve many letter-string
analogy problems (including the examples I presented above,
plus many variations), the program only scratched the surface of
its very open-ended domain. For example, here are two
problems my program could not solve:



PROBLEM 4: If azbzczd changes to abcd, what does pxqxrxsxt change to?

PROBLEM 5: If abc changes to abd, what does ace change to?

Both problems require recognizing new concepts on the fly,
an ability that Copycat lacked. In problem 4, the z’s and the x’s
play the same role, something like “the extra letters that need to
be deleted to see the alphabetic sequence,” giving answer pqrst.
In problem 5, the ace sequence is similar to the abc sequence,
except instead of a “successorship” sequence it is a “double
successorship” sequence, yielding answer acg. It would have
been easy for me to give Copycat the ability to count the number
of letters between, say, a and c and c and e, but I didn’t want to
build in abilities that were very specific to the letter-string
domain. Copycat was meant to be a test bed for general ideas
about analogy rather than a comprehensive “letter-string
analogy maker.”

Metacognition in the Letter-String World
An essential aspect of human intelligence—one that isn’t
discussed much in AI these days—is the ability to perceive and
reflect on one’s own thinking. In psychology, this is called
metacognition. Have you ever struggled unsuccessfully to solve
a problem, finally recognizing that you have been repeating the
same unproductive thought processes? This happens to me all
the time; however, once I recognize this pattern, I can
sometimes break out of the rut. Copycat, like all of the other AI
programs I’ve discussed in this book, had no mechanisms for
self-perception, and this hurt its performance. The program
would sometimes get stuck, trying again and again to solve a
problem in the wrong way, and could never perceive that it had
previously been down a similar, unsuccessful path.



James Marshall, at the time a graduate student in Douglas
Hofstadter’s research group, took on the project of getting
Copycat to reflect on its own “thinking.” He created a program
called Metacat, which not only solved analogy problems in
Copycat’s letter-string domain but also tried to perceive patterns
in its own actions. When the program ran, it produced a running
commentary about what concepts it recognized in its own
problem-solving process.22 Like Copycat, Metacat exhibited some
fascinating behavior but only scratched the surface of humanlike
self-reflection abilities.

Recognizing Visual Situations
My own current research is on developing an AI system that uses
analogy to flexibly recognize visual situations—visual concepts
involving multiple entities and their relationships. For example,
each of the four images in figure 48 is an instance of a visual
situation we might call “walking a dog.” This is easy to see for
humans, but recognizing instances of even simple visual
situations turns out to be very challenging for AI systems.
Recognizing entire situations is much harder than recognizing
individual objects.

My collaborators and I are developing a program—called
Situate—that combines the object-recognition abilities of deep
neural networks with Copycat’s active-symbol architecture, in
order to recognize instances of particular situations by making
analogies. We would like our program to be able to recognize
not only straightforward examples, such as the ones in figure 48,
but also unorthodox examples that require conceptual
slippages. The prototype “walking a dog” situation involves a
person (a dog walker), a dog, and a leash. The dog walker is
holding the leash, the leash is attached to the dog, and both dog
walker and dog are walking. Right? Indeed, this is what we see in



the examples of figure 48. But humans who understand the
concept of walking a dog would also recognize each of the
images in figure 49 as instances of this concept while at the
same time being aware of how much each is “stretched” from
the prototypical version. Situate, still in the early stages of
development, is meant to test ideas about the general
mechanisms underlying human analogy making and to
demonstrate that the ideas underlying the Copycat program can
operate successfully beyond the microworld of letter-string
analogies.

Copycat, Metacat, and Situate are only three examples of
several analogy-making programs that are based on Hofstadter’s
active-symbol architecture.23 Moreover, the active-symbol
architecture is only one of many approaches in the AI
community to creating programs that can make analogies.
However, while analogy is fundamental to human cognition at
every level, there are as yet no AI programs that come remotely
close to human analogy-making abilities.

“We Are Really, Really Far Away”
The modern age of artificial intelligence is dominated by deep
learning, with its triumvirate of deep neural networks, big data,
and ultrafast computers. However, in the quest for robust and
general intelligence, deep learning may be hitting a wall: the all-
important “barrier of meaning.” In this chapter, I’ve presented a
brief survey of some efforts in AI toward unlocking that barrier.
I’ve looked at how researchers (including myself) are trying to
imbue computers with commonsense knowledge and to give
them humanlike abilities for abstraction and analogy making.



FIGURE 48: Four straightforward instances of “walking a dog”

While thinking about this topic, I was particularly taken by a
delightful and insightful blog post written by Andrej Karpathy,
the deep-learning and computer-vision expert who now directs
AI efforts at Tesla. In his post, titled “The State of Computer
Vision and AI: We Are Really, Really Far Away,”24 Karpathy
describes his reactions, as a computer-vision researcher, to one
specific photo, shown in figure 50. Karpathy notes that we
humans find this image quite humorous, and asks, “What would
it take for a computer to understand this image as you or I do?”



FIGURE 49: Four atypical instances of “walking a dog”

Karpathy lists many of the things we humans easily
understand but that remain beyond the abilities of today’s best
computer-vision programs. For example, we recognize that there
are people in the scene, but also that there are mirrors, so some
of the people are reflections in those mirrors. We recognize the
scene as a locker room and we are struck by the oddity of seeing
a bunch of people in suits in a locker-room setting.

Furthermore, we recognize that a person is standing on a
scale, even though the scale is made up of white pixels that
blend in with the background. Karpathy points out that we
recognize that “Obama has his foot positioned just slightly on
top of the scale,” and notes that we easily describe this in terms
of the three-dimensional structure of the scene we infer rather
than the two-dimensional image that we are given. Our intuitive
knowledge of physics lets us reason that Obama’s foot will cause



the scale to overestimate the weight of the person on the scale.
Our intuitive knowledge of psychology tells us that the person
on the scale is not aware that Obama is also stepping on the
scale—we infer this from the person’s direction of gaze, and we
know that he doesn’t have eyes in the back of his head. We also
understand that the person probably can’t sense the slight push
of Obama’s foot on the scale. Our theory of mind further lets us
predict that the man will not be happy when the scale shows his
weight to be higher than he expected.

FIGURE 50: The photo discussed in Andrej Karpathy’s blog

Finally, we recognize that Obama and the other people
observing this scene are smiling—we infer from their
expressions that they are amused by the trick Obama is playing
on the man on the scale, possibly made funnier because of
Obama’s status. We also recognize that their amusement is



friendly, and that they expect the man on the scale to himself
laugh when he is let in on the joke. Karpathy notes: “You are
reasoning about [the] state of mind of people, and their view of
the state of mind of another person. That’s getting frighteningly
meta.”

In summary, “It is mind-boggling that all of the above
inferences unfold from a brief glance at a 2D array of [pixel]
values.”

For me, Karpathy’s example beautifully captures the
complexity of human understanding and renders with crystal
clarity the magnitude of the challenge for AI. Karpathy’s post
was written in 2012, but its message is just as true today and will
remain so, I believe, for a long time to come.

Karpathy concludes his post with this thought:

A seemingly inescapable conclusion for me is that we may  … need
embodiment, and that the only way to build computers that can
interpret scenes like we do is to allow them to get exposed to all the
years of (structured, temporally coherent) experience we have, ability
to interact with the world, and some magical active learning/inference
architecture that I can barely even imagine when I think backwards
about what it should be capable of.

In the seventeenth century, the philosopher René Descartes
speculated that our bodies and our thoughts are made up of
different substances and are subject to different physical laws.25

Since the 1950s, the dominant approaches to AI have implicitly
embraced Descartes’s thesis, assuming that general intelligence
can be attained by disembodied computers. However, a small
segment of the AI community has consistently argued for the so-
called embodiment hypothesis: the premise that a machine
cannot attain human-level intelligence without having some kind
of body that interacts with the world.26 In this view, a computer
sitting on a desk, or even a disembodied brain growing in a vat,
could never attain the concepts necessary for general
intelligence. Instead, only the right kind of machine—one that is



embodied and active in the world—would have human-level
intelligence in its reach. Like Karpathy, I can barely imagine what
breakthroughs we would need to build such a machine. But after
grappling with AI for many years, I am finding the embodiment
argument increasingly compelling.



16

Questions, Answers, and
Speculations

Near the end of his 1979 book, Gödel, Escher, Bach, Douglas
Hofstadter interviewed himself about the future of AI. In a
section called “Ten Questions and Speculations,” he posed and
answered questions not only about the potential for machine
thinking but also about the general nature of intelligence.
Reading GEB as a recent college graduate, I was keenly
interested in this section. Hofstadter’s speculations convinced
me that in spite of all the media hype regarding the imminence
of human-level artificial intelligence (we had this in the 1980s
too), the field was actually wide open and acutely in need of new
ideas. There were still plenty of profound challenges waiting for
young people like me just starting out in the field.

Writing now, well over three decades later, I thought it would
be fitting to close this book with some of my own questions,
answers, and speculations, both as an homage to Hofstadter’s
section in GEB and as a way to tie together the ideas I have
presented.

Question: How soon will self-driving cars
be commonplace?



It depends on what you mean by “self-driving.” The U.S. National
Highway Traffic Safety Administration has defined six levels of
autonomy for vehicles.1 I’ll paraphrase them here.

•  LEVEL 0: The human driver does all the driving.
•  LEVEL 1: The vehicle can sometimes assist the human driver with

either steering or vehicle speed, but not both simultaneously.
•  LEVEL 2: The vehicle can control both steering and vehicle speed

simultaneously under some circumstances (usually highway driving).
The human driver must continue to pay full attention (“monitor the
driving environment”) at all times and do everything else needed
for driving, such as changing lanes, exiting highways, stopping at
traffic lights, and pulling over for police cars.

•  LEVEL 3: The vehicle can perform all aspects of driving under certain
circumstances, but the human driver must pay attention at all times
and be ready to take back control at any time that the vehicle
requests the human driver to do so.

•  LEVEL 4: The vehicle can do all the driving under certain
circumstances. In those circumstances, the human does not need
to pay attention.

•  LEVEL 5: The vehicle can do all the driving in all circumstances. The
human occupants are just passengers and never need to be
involved in driving.

I’m sure you noted the all-important hedge phrase “under
certain circumstances.” There’s no way to make an exhaustive list
of the circumstances in which, say, a level 4 vehicle can do all the
driving, though one can imagine many circumstances that would
likely be challenging for an autonomous vehicle: for example,
bad weather, crowded city traffic, navigating through a
construction zone, or driving on a narrow two-way road without
any lane markings.

At the time of this writing, most cars on the road are
between levels 0 and 1—they have cruise control, but no
steering or braking control. Some recent-model cars—those with
“adaptive cruise control”—are considered at level 1. There are a



few types of vehicles currently at levels 2 and 3, such as Tesla
cars that have an Autopilot system. The makers and users of
these vehicles are still learning what situations are included in
the “certain circumstances” in which the human driver needs to
take over. There are also experimental vehicles that can operate
fully autonomously in fairly wide circumstances, but these
vehicles still need human “safety drivers” who remain ready to
take over at a moment’s notice. Several fatal accidents caused by
self-driving cars, including the experimental ones, have occurred
when a human was supposed to have been ready to take over
but was not paying attention.

The self-driving car industry desperately wants to produce
and sell fully autonomous vehicles (that is, level 5); indeed, full
autonomy is what we, the consumers, have long been promised
in all the buzz around self-driving cars. What are the obstacles to
getting to true autonomy in our cars?

The primary obstacles are the kinds of long-tail situations
(“edge cases”) that I described in chapter 6: situations that the
vehicle was not trained on, and that might individually occur
rarely, but that, taken together, will occur frequently when
autonomous vehicles are widespread. As I described, human
drivers deal with these events by using common sense—
particularly the ability to understand and make predictions
about novel situations by analogy to situations the driver already
understands.

Full autonomy in vehicles also requires the sort of core
intuitive knowledge that I described in chapter 14: intuitive
physics, biology, and especially psychology. In order to drive
reliably in all circumstances, a driver needs to understand the
motivations, the goals, and even the emotions of other drivers,
bicycle riders, pedestrians, and animals sharing the road. Sizing
up a complex situation and making split-second assessments of
who is likely to jaywalk, dart across the street to run for a bus,
turn abruptly without signaling, or stop in a crosswalk to adjust a



broken high-heeled shoe—this is second nature to most human
drivers, but not yet to self-driving cars.

Another looming problem for autonomous vehicles is the
potential for malicious attacks of various kinds. Computer-
security experts have shown that even many of the
nonautonomous cars we drive today—which are increasingly
controlled by software—are vulnerable to hacking via their
connection to wireless networks, including Bluetooth, cell phone
networks, and internet connections.2 Because autonomous cars
will be completely controlled by software, they will potentially be
even more vulnerable to malicious hacking. In addition, as I
described in chapter 6, machine-learning researchers have
demonstrated possible “adversarial attacks” on computer-vision
systems of self-driving cars—some as simple as putting
inconspicuous stickers on stop signs that make the car classify
them as speed-limit signs. Developing proper computer security
for self-driving cars will be as important as any other part of
autonomous-driving technology.

Hacking aside, another problem will be what we might call
human nature. People will inevitably want to play pranks on fully
autonomous self-driving cars, to probe their weaknesses—for
example, by stepping on and off a curb (pretending to be about
to cross the street) to keep the car from moving forward. How
should cars be programmed to recognize and deal with such
behavior? There are also major legal issues that need to be
sorted out for fully autonomous vehicles, such as who is
considered liable in an accident and what kinds of insurance will
be required.

There’s one particularly thorny question for the future of self-
driving cars: Should the industry be aiming for partial autonomy,
in which the car does all the driving in “certain circumstances”
but the human driver still needs to pay attention and take over if
needed? Or should the sole aim be full autonomy, in which the



human can completely trust the car’s driving and never needs to
pay attention?

The technology for sufficiently reliable fully autonomous
vehicles—those that can drive by themselves in almost every
situation—does not yet exist because of the problems that I
described above. It’s hard to predict when these problems will be
solved; I’ve seen the predictions of “experts” range from a few
years to decades. It’s worth remembering the maxim that the
first 90 percent of a complex technology project takes 10 percent
of the time and the last 10 percent takes 90 percent of the time.

The technology for level 3 partial autonomy exists right now.
But as has been demonstrated many times, humans are terrible
at dealing with partial autonomy. Even if human drivers know
that they are supposed to be paying attention at all times, they
sometimes don’t, and because the cars are not able to handle all
the situations that arise, accidents will occur.

Where does this leave us? Achieving full autonomy in driving
essentially requires general AI, which likely won’t be achieved
anytime soon. Cars with partial autonomy exist now, but are
dangerous because the humans driving them don’t always pay
attention. The most likely solution to this dilemma is to change
the definition of full autonomy: allowing autonomous cars to
drive only in specific areas—those that have created the
infrastructure to ensure that the cars will be safe. A common
version of this solution goes by the name “geofencing.” Jackie
DiMarco, former chief engineer for autonomous vehicles at Ford
Motor Company, explained geofencing this way:

When we talk about level 4 autonomy, it’s fully autonomous within a
geofence, so within an area where we have a defined high definition
map. Once you have that map you can understand your environment.
You can understand where the lamp posts are, where the crosswalks
are, what the rules of the road are, speed limit and so on. We look at
autonomy as growing within a certain geofence and then expanding
on there as the technology comes along, as our learning comes along
and as our ability to solve more and more problems comes along.3



Of course, those pesky humans are still around within the
geofence. The AI researcher Andrew Ng suggests that
pedestrians need to be educated to behave more predictably
around self-driving vehicles: “What we tell people is, ‘Please be
lawful and please be considerate.’”4 Ng’s autonomous-driving
company, Drive.ai, has launched a fleet of fully autonomous self-
driving taxi vans that pick up and drop off passengers in
appropriately geofenced areas, starting in Texas, one of the few
states whose laws allow such vehicles. We’ll soon see how well
this experiment, complete with its optimistic plans for pedestrian
education, turns out.

Question: Will AI result in massive
unemployment for humans?

I don’t know. My guess is no, at least not anytime soon. Marvin
Minsky’s “easy things are hard” maxim still holds for much of AI,
and many human jobs are likely to be much harder for
computers (or robots) than one might think.

There’s no question that AI systems will replace humans in
some jobs; they already have, often much to society’s benefit.
But no one yet knows what AI’s overall effect on employment will
be, because no one can predict the abilities of future AI
technologies.

There have been many reports on the likely effects of AI on
employment, focusing particularly on the vulnerability of the
millions of jobs that involve driving. It’s possible that the humans
working in these jobs will eventually be replaced, but the
uncertainty of when widespread autonomous driving will
actually arrive makes the timeline hard to predict.

In spite of the uncertainty, the issue of technology and jobs
is (rightly) part of the overall ongoing discussion of AI ethics.
Several people have pointed out that, historically, new



technologies have created as many new kinds of jobs as they
replace, and AI might be no exception. Perhaps AI will take away
truck-driving jobs, but because of the need to develop AI ethics,
the field will create new positions for moral philosophers. I say
this not to diminish the potential problem but to express the
uncertainty around this issue. A carefully researched 2016 report
from the U.S. Council of Economic Advisers, on AI’s possible
effects on the economy, stressed this point: “There is substantial
uncertainty about how strongly these effects will be felt, and
how rapidly they will arrive.… Given presently available evidence,
it is not possible to make specific predictions, so policymakers
must be prepared for a range of potential outcomes.”5

Question: Could a computer be creative?
To many people, the idea of a computer being creative sounds
like an oxymoron. The very nature of a machine, after all, is to be
“mechanical”—a term that in everyday language connotes the
opposite of creativity. A skeptic might argue, “A computer can do
only what it is programmed to do by a human. Thus it cannot be
creative; creativity requires creating something new on one’s
own.”6

I think this view—that a computer, by definition, cannot be
creative because it can do only what it is explicitly programmed
to do—is wrong. There are many ways in which a computer
program can generate things that its programmer never thought
of. My program Copycat (described in the previous chapter)
often came up with analogies that would never have occurred to
me but that had their own strange logic. I believe that it is
possible, in principle, for a computer to be creative. But I also
believe that being creative entails being able to understand and
judge what one has created. In this sense of creativity, no
existing computer can be said to be creative.



A related question is whether a computer program could
produce a beautiful piece of art or music. Beauty is highly
subjective, but my answer is definitely yes. I’ve seen numerous
computer-generated artworks that I consider beautiful. One set
of examples is the “genetic art” of the computer scientist and
artist Karl Sims.7 Sims programmed computers to generate
digital artworks using an algorithm loosely inspired by
Darwinian natural selection. Using mathematical functions with
some random elements, Sims’s program would generate several
different candidate artworks. A person would select the one he
or she liked the best. The program would create variations of the
selected artwork by introducing randomness into the underlying
mathematical functions. The person would then select a favorite
of the mutations, and so on, for many iterations. This process
generated some stunning abstract works that have been
exhibited widely in museum shows.

In Sims’s project, the creativity results from the teamwork of
human and computer: the computer generates initial artworks
and then successive variations, and the human provides
judgment of the resulting works, which comes from the human’s
understanding of abstract artistic concepts. The computer has
no understanding whatsoever, so it alone is not creative.

There have been similar examples with music generation, in
which a computer is able to generate beautiful (or at least
pleasing) music, but in my view the creativity comes about only
through collaboration with a human who lends the ability to
understand what makes music good and thus provides
judgment on the computer’s output.

The most famous computer program that generated music
in this way was the Experiments in Musical Intelligence (EMI)
program,8 which I mentioned in the prologue. EMI was designed
to generate music in the style of various classical composers,
and some of its pieces managed to fool even professional



musicians into believing they had been written by the actual
composer.

EMI was created by the composer David Cope, originally to
serve as a kind of personal “composer’s assistant.” Cope had
been intrigued by the long tradition of employing randomness to
generate music. A famous example is the so-called musical dice
game, played by Mozart and other eighteenth-century
composers, in which a composer cut up a piece of music into
small segments (for example, individual measures) and then
rolled dice to choose where the segments were placed in the
new piece.

EMI, it could be said, was a musical dice game on steroids. To
get EMI to create pieces in the style of, say, Mozart, Cope first
selected from Mozart’s works a large collection of short musical
segments and applied a computer program he had written that
identified key musical patterns he called “signatures”—patterns
that help define the composer’s unique style. Cope wrote
another program that classified each signature as to the
particular musical roles it could play in a piece. These signatures
were stored in a database corresponding to the composer
(Mozart, in our example). Cope also developed in EMI a set of
rules—a kind of musical “grammar”—that captured constraints
for how variations of signatures could be recombined to create a
coherent piece of music in a particular style. EMI employed a
random-number generator (the computer equivalent of
throwing dice) to select signatures and create musical segments
from them; the program then used its musical grammar to help
decide how to order the segments.

In this way, EMI could generate a limitless number of new
compositions “in the style” of Mozart or any other composer for
whom a database of musical signatures had been constructed.
Cope carefully chose the best of EMI’s compositions to release
publicly. I’ve listened to several of them; to my ear, they range
from mediocre to amazingly good, with some beautiful



passages, though none have the depth of the original
composer’s work. (Of course, I say this knowing ahead of time
that the pieces are by EMI, so I might be prejudiced.) The longer
pieces often contain lovely passages, but also have a non-
humanlike tendency to lose the thread of a musical idea. But
overall, the published works of EMI were very successful in
capturing the style of several different classical composers.

Was EMI creative? My own answer is no. Some of the music
EMI generated was quite good, but it was reliant on Cope’s
musicological knowledge, which was embedded in the musical
signatures that Cope curated and the musicological rules he
devised. Most crucially, I would contend that the program had no
real understanding of the music it generated—neither in terms
of the musical concepts nor in terms of the music’s emotional
impact. For these reasons, EMI could not judge the quality of its
own music. That was Cope’s job; he said simply, “The works I like
are released and the ones that I don’t are not.”9

In 2005, in a decision that I find bewildering, Cope destroyed
EMI’s entire database of musical signatures. The main reason he
gave was that EMI’s compositions, being so easily and infinitely
producible, were devalued by critics. Cope felt that EMI would be
valued as a composer only if it had, as the philosopher Margaret
Boden wrote, a “finite oeuvre—as all human composers, beset
by mortality, do.”10

I don’t know if my opinion will offer any consolation to
Douglas Hofstadter, who was so upset by EMI’s most impressive
compositions and their ability to fool professional musicians. I
understand Hofstadter’s worry. As the literary scholar Jonathan
Gottschall has observed, “Art is arguably what most
distinguishes humans from the rest of creation. It’s the thing
that makes us proudest of ourselves.”11 But I would add that
what makes us proud is not only the generation of art but also
our ability to appreciate it, to understand what makes it moving,
and to comprehend what it communicates. This appreciation



and understanding are essential for both the audience and the
artist; without this, I can’t call a creation “creative.” In short, to
answer the question “Could a computer be creative?” I would say
yes in principle, but it won’t happen soon.

Question: How far are we from creating
general human-level AI?

I’ll answer this by quoting Oren Etzioni, director of the Allen
Institute for AI: “Take your estimate, double it, triple it,
quadruple it. That’s when.”12

For a second opinion, recall Andrej Karpathy’s assessment
from the previous chapter: “We are really, really far away.”13

That’s my view too.
Computers started off as human. In fact, they were usually

women who performed calculations by hand or with mechanical
desk calculators, such as the calculations needed during World
War II to compute missile trajectories to help soldiers aim their
artillery guns. This was the original meaning of computer.
According to Claire Evans’s book Broad Band, in the 1930s and
’40s, “the term ‘girl’ was used interchangeably with ‘computer.’
One member of the … National Defense Research Committee …
ballparked a unit of ‘kilogirl’ energy as being equivalent to
roughly a thousand hours of computing labor.”14

In the mid-1940s, electronic computers replaced the human
kind and immediately became superhuman: unlike any human
computer, the machines could calculate “the trajectory of a
speeding shell faster than the shell could fly.”15 This was the first
of many narrow tasks at which computers have excelled. Today’s
computers—programmed with state-of-the-art AI algorithms—
have conquered many other narrow tasks, but general
intelligence still eludes them.



We’ve seen that over the history of the field well-known AI
practitioners have predicted that general AI will arrive in ten
years, or fifteen, or twenty-five, or “in a generation.” However,
none of these predictions has come to pass. As I described in
chapter 3, the “long bet” between Ray Kurzweil and Mitchell
Kapor, as to whether a program will pass a carefully structured
Turing test, will be decided in 2029. My bet is on Kapor; I
wholeheartedly agree with his sentiments, quoted in the
prologue: “Human intelligence is a marvelous, subtle, and poorly
understood phenomenon. There is no danger of duplicating it
anytime soon.”16

“Prediction is hard, especially about the future.” It’s
debatable who coined this witty saying, but it is as true in AI as in
any other domain. Several surveys given to AI practitioners,
asking when general AI or “superintelligent” AI will arrive, have
exposed a wide spectrum of opinion, ranging from “in the next
ten years” to “never.”17 In other words, we don’t have a clue.

What we do know is that general human-level AI will require
abilities that AI researchers have been struggling for decades to
understand and reproduce—commonsense knowledge,
abstraction, and analogy, among others—but these abilities
have proven to be profoundly elusive. Other major questions
remain: Will general AI require consciousness? Having a sense of
self? Feeling emotions? Possessing a survival instinct and fear of
death? Having a body? As I quoted Marvin Minsky earlier, “This is
still a formative period for our ideas about mind.”

I find the question of when computers will achieve
superintelligence—“an intellect that is much smarter than the
best human brains in practically every field, including scientific
creativity, general wisdom and social skills”18—vexing, to say the
least.

Several writers have asserted that if computers reach
general human-level AI, these machines will quickly become
“superintelligent,” in a process akin to I. J. Good’s vision of an



“intelligence explosion” (described in chapter 3). The thinking
goes that a computer with general intelligence will be able to
read, at lightning speed, all of humanity’s documents and learn
everything there is to know. Likewise, it will be able to discover,
through its ever-increasing deduction abilities, all kinds of new
knowledge that it can turn into new cognitive power for itself.
Such a machine would not be constrained by the annoying
limitations of humans, such as our slowness of thought and
learning, our irrationality and cognitive biases, our susceptibility
to boredom, our need for sleep, and our emotions, all of which
get in the way of productive thinking. In this view, a
superintelligent machine would encompass something close to
“pure” intelligence, without being constrained by any of our
human foibles.

What seems more likely to me is that these supposed
limitations of humans are part and parcel of our general
intelligence. The cognitive limitations forced upon us by having
bodies that work in the world, along with the emotions and
“irrational” biases that evolved to allow us to function as a social
group, and all the other qualities sometimes considered
cognitive “shortcomings,” are in fact precisely what enable us to
be generally intelligent rather than narrow savants. I can’t prove
it, but I think it’s likely that general intelligence can’t be
separated from all these apparent shortcomings, in humans or
in machines.

In his “Ten Questions and Speculations” section in GEB
Douglas Hofstadter addressed this issue with a deceptively
simple question: “Will a thinking computer be able to add fast?”
His answer surprised me when I first read it but now strikes me
as correct. “Perhaps not. We ourselves are composed of
hardware which does fancy calculations but that doesn’t mean
that our symbol level, where ‘we’ are, knows how to carry out the
same fancy calculation. Luckily for you, your symbol level (i.e.,
you) can’t gain access to the neurons which are doing your



thinking—otherwise you’d get addle-brained.… Why should it not
be the same for an intelligent program?” Hofstadter went on to
explain that an intelligent program would, like us, represent
numbers as “full-fledged concept[s] the way we do, replete with
associations.… With all this ‘extra baggage’ to carry around, an
intelligent program will become quite slothful in its adding.”19

Question: How terrified should we be
about AI?

If you rely on movies and science fiction (and even some popular
nonfiction) for your view of AI, you’ll be afraid of AI becoming
conscious, turning malevolent, and trying to enslave or kill us all.
But given how far the field seems from achieving anything like
general intelligence, this isn’t what most people in the AI
community worry about. As I’ve described throughout this book,
there are many reasons to worry about our society’s headlong
dash toward embracing AI technology: the possibility of massive
job losses, the potential for misuse of AI systems, and these
systems’ unreliability and vulnerability to attack—these are just
some of the very legitimate worries of people concerned about
the impacts of technology on the lives of humans.

I began this book with an account of Douglas Hofstadter’s
dismay regarding recent AI progress, but he was terrified, for the
most part, about something altogether different. Hofstadter’s
worry was that human cognition and creativity would be too
easily matched by AI programs and that the sublime creations of
the human minds that he most revered—Chopin, for example—
might be rivaled by superficial algorithms like EMI using a “bag
of tricks.” Hofstadter lamented, “If such minds of infinite subtlety
and complexity and emotional depth could be trivialized by a
small chip, it would destroy my sense of what humanity is
about.” Hofstadter was likewise disturbed by Kurzweil’s



predictions of the oncoming Singularity, agonizing that if
Kurzweil was in any way correct, “we will be superseded. We will
be relics. We will be left in the dust.”

I empathize with Hofstadter on these worries, but I think
they are decidedly premature. Above all, the take-home message
from this book is that we humans tend to overestimate AI
advances and underestimate the complexity of our own
intelligence. Today’s AI is far from general intelligence, and I
don’t believe that machine “superintelligence” is anywhere on
the horizon. If general AI ever comes about, I am betting that its
complexity will rival that of our own brains.

In any ranking of near-term worries about AI,
superintelligence should be far down the list. In fact, the
opposite of superintelligence is the real problem. Throughout
this book, I’ve described how even the most accomplished AI
systems are brittle; that is, they make errors when their input
varies too much from the examples on which they’ve been
trained. It’s often hard to predict in what circumstances an AI
system’s brittleness will come to light. In transcribing speech,
translating between languages, describing the content of
photos, driving in a crowded city—if robust performance is
critical, then humans are still needed in the loop. I think the
most worrisome aspect of AI systems in the short term is that we
will give them too much autonomy without being fully aware of
their limitations and vulnerabilities. We tend to
anthropomorphize AI systems: we impute human qualities to
them and end up overestimating the extent to which these
systems can actually be fully trusted.

The economist Sendhil Mullainathan, in writing about the
dangers of AI, cited the long-tail phenomenon (which I described
in chapter 6) in his notion of “tail risk”:

We should be afraid. Not of intelligent machines. But of machines
making decisions that they do not have the intelligence to make. I am
far more afraid of machine stupidity than of machine intelligence.



Machine stupidity creates a tail risk. Machines can make many many
good decisions and then one day fail spectacularly on a tail event that
did not appear in their training data. This is the difference between
specific and general intelligence.20

Or as the AI researcher Pedro Domingos so memorably put
it, “People worry that computers will get too smart and take over
the world, but the real problem is that they’re too stupid and
they’ve already taken over the world.”21

I worry about AI’s lack of reliability. I also worry about how it
will be used. In addition to the ethical considerations I covered in
chapter 7, one particular development that frightens me is the
use of AI systems to generate fake media: text, sounds, images,
and videos that depict with terrifying realism events that never
actually happened.

So, should we be terrified about AI? Yes and no.
Superintelligent, conscious machines are not on the horizon. The
aspects of our humanity that we most cherish are not going to
be matched by “a bag of tricks.” At least I don’t think so.
However, there is a lot to worry about regarding the potential for
dangerous and unethical uses of algorithms and data. It’s scary,
but on the other hand I’m heartened by the wide attention this
topic has recently received in the AI community and beyond.
There’s a sense of cooperation and common purpose that is
emerging among researchers, corporations, and politicians on
the urgency of reckoning with these issues.

Question: What exciting problems in AI
are still unsolved?

Nearly all of them.
When I started working in AI, part of what I found exciting

was that nearly all the important questions of the field were
open, waiting for new ideas. I think that this is still true.



If we go back to the beginning of the field, the 1955 proposal
by John McCarthy and others (described in chapter 1) listed some
of AI’s major research topics: natural-language processing,
neural networks, machine learning, abstract concepts and
reasoning, and creativity. In 2015, Microsoft’s research director
Eric Horvitz joked that “One might even say that the [1955]
proposal, if properly reformatted, could be resubmitted to the
National Science Foundation  … today and would probably get
some funding by some excited program managers.”22

This is by no means a criticism of past AI research. Artificial
intelligence is at least as hard as any of humanity’s other grand
scientific challenges. MIT’s Rodney Brooks stated this better than
anyone else: “When AI got started, the clear inspiration was
human level performance and human level intelligence. I think
that goal has been what attracted most researchers into the field
for the first sixty years. The fact that we do not have anything
close to succeeding at those aspirations says not that
researchers have not worked hard or have not been brilliant. It
says that it is a very hard goal.”23

The most exciting questions in AI are not only focused on
potential applications. The founders of the field were motivated
as much by scientific questions about the nature of intelligence
as by the desire to develop new technologies. Indeed, the idea
that intelligence is a natural phenomenon, one that could be
studied like many other phenomena by building simplified
computer models, was the motivation that drew many people
(including myself) into the field.

The impacts of AI will continue to grow for all of us. I hope
that this book has helped you, as a thinking human, to get a
sense of the current state of this burgeoning discipline, including
its many unsolved problems, the potential risks and benefits of
its technologies, and the scientific and philosophical questions it
raises for understanding our own human intelligence. And if any



computers are reading this, tell me what it refers to in the
previous sentence and you’re welcome to join in the discussion.
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